Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.lens.ml; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import java.lang.reflect.Field; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; /** * The Class TrainerArgParser. */ public class TrainerArgParser { /** * The Class CustomArgParser. * * @param <E> * the element type */ public abstract static class CustomArgParser<E> { /** * Parses the. * * @param value * the value * @return the e */ public abstract E parse(String value); } /** The Constant LOG. */ public static final Log LOG = LogFactory.getLog(TrainerArgParser.class); /** * Extracts feature names. If the trainer has any parameters associated with @TrainerParam annotation, those are set * as well. * * @param trainer * the trainer * @param args * the args * @return List of feature column names. */ public static List<String> parseArgs(MLTrainer trainer, String[] args) { List<String> featureColumns = new ArrayList<String>(); Class<? extends MLTrainer> trainerClass = trainer.getClass(); // Get param fields Map<String, Field> fieldMap = new HashMap<String, Field>(); for (Field fld : trainerClass.getDeclaredFields()) { fld.setAccessible(true); TrainerParam paramAnnotation = fld.getAnnotation(TrainerParam.class); if (paramAnnotation != null) { fieldMap.put(paramAnnotation.name(), fld); } } for (int i = 0; i < args.length; i += 2) { String key = args[i].trim(); String value = args[i + 1].trim(); try { if ("feature".equalsIgnoreCase(key)) { featureColumns.add(value); } else if (fieldMap.containsKey(key)) { Field f = fieldMap.get(key); if (String.class.equals(f.getType())) { f.set(trainer, value); } else if (Integer.TYPE.equals(f.getType())) { f.setInt(trainer, Integer.parseInt(value)); } else if (Double.TYPE.equals(f.getType())) { f.setDouble(trainer, Double.parseDouble(value)); } else if (Long.TYPE.equals(f.getType())) { f.setLong(trainer, Long.parseLong(value)); } else { // check if the trainer provides a deserializer for this param String customParserClass = trainer.getConf().getProperties().get("lens.ml.args." + key); if (customParserClass != null) { Class<? extends CustomArgParser<?>> clz = (Class<? extends CustomArgParser<?>>) Class .forName(customParserClass); CustomArgParser<?> parser = clz.newInstance(); f.set(trainer, parser.parse(value)); } else { LOG.warn("Ignored param " + key + "=" + value + " as no parser found"); } } } } catch (Exception exc) { LOG.error("Error while setting param " + key + " to " + value + " for trainer " + trainer); } } return featureColumns; } }