Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.mapreduce.lib.partition; import static org.junit.Assert.*; import java.util.Arrays; import java.util.Collections; import org.apache.commons.lang.ArrayUtils; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.NullWritable; import org.junit.*; public class TestRehashPartitioner { /** number of partitions */ private static final int PARTITIONS = 32; /** step in sequence */ private static final int STEP = 3; /** end of test sequence */ private static final int END = 100000; /** maximum error for considering too big/small bucket */ private static final double MAX_ERROR = 0.20; /** maximum number of oddly sized buckets */ private static final double MAX_BADBUCKETS = 0.10; /** test partitioner for patterns */ @Test public void testPatterns() { int results[] = new int[PARTITIONS]; RehashPartitioner<IntWritable, NullWritable> p = new RehashPartitioner<IntWritable, NullWritable>(); /* test sequence 4, 8, 12, ... 128 */ for (int i = 0; i < END; i += STEP) { results[p.getPartition(new IntWritable(i), null, PARTITIONS)]++; } int badbuckets = 0; Integer min = Collections.min(Arrays.asList(ArrayUtils.toObject(results))); Integer max = Collections.max(Arrays.asList(ArrayUtils.toObject(results))); Integer avg = (int) Math.round((max + min) / 2.0); System.out.println("Dumping buckets distribution: min=" + min + " avg=" + avg + " max=" + max); for (int i = 0; i < PARTITIONS; i++) { double var = (results[i] - avg) / (double) (avg); System.out.println("bucket " + i + " " + results[i] + " items, variance " + var); if (Math.abs(var) > MAX_ERROR) badbuckets++; } System.out.println(badbuckets + " of " + PARTITIONS + " are too small or large buckets"); assertTrue("too many overflow buckets", badbuckets < PARTITIONS * MAX_BADBUCKETS); } }