org.apache.hadoop.mapreduce.lib.chain.ChainReducer.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.hadoop.mapreduce.lib.chain.ChainReducer.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.hadoop.mapreduce.lib.chain;

import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.chain.Chain.ChainBlockingQueue;

import java.io.IOException;

/**
 * The ChainReducer class allows to chain multiple Mapper classes after a
 * Reducer within the Reducer task.
 * 
 * <p>
 * For each record output by the Reducer, the Mapper classes are invoked in a
 * chained (or piped) fashion. The output of the reducer becomes the input of
 * the first mapper and output of first becomes the input of the second, and so
 * on until the last Mapper, the output of the last Mapper will be written to
 * the task's output.
 * </p>
 * <p>
 * The key functionality of this feature is that the Mappers in the chain do not
 * need to be aware that they are executed after the Reducer or in a chain. This
 * enables having reusable specialized Mappers that can be combined to perform
 * composite operations within a single task.
 * </p>
 * <p>
 * Special care has to be taken when creating chains that the key/values output
 * by a Mapper are valid for the following Mapper in the chain. It is assumed
 * all Mappers and the Reduce in the chain use matching output and input key and
 * value classes as no conversion is done by the chaining code.
 * </p>
 * <p> Using the ChainMapper and the ChainReducer classes is possible to
 * compose Map/Reduce jobs that look like <code>[MAP+ / REDUCE MAP*]</code>. And
 * immediate benefit of this pattern is a dramatic reduction in disk IO. </p>
 * <p>
 * IMPORTANT: There is no need to specify the output key/value classes for the
 * ChainReducer, this is done by the setReducer or the addMapper for the last
 * element in the chain.
 * </p>
 * ChainReducer usage pattern:
 * <p>
 * 
 * <pre>
 * ...
 * Job = new Job(conf);
 * ....
 *
 * Configuration reduceConf = new Configuration(false);
 * ...
 * ChainReducer.setReducer(job, XReduce.class, LongWritable.class, Text.class,
 *   Text.class, Text.class, true, reduceConf);
 *
 * ChainReducer.addMapper(job, CMap.class, Text.class, Text.class,
 *   LongWritable.class, Text.class, false, null);
 *
 * ChainReducer.addMapper(job, DMap.class, LongWritable.class, Text.class,
 *   LongWritable.class, LongWritable.class, true, null);
 *
 * ...
 *
 * job.waitForCompletion(true);
 * ...
 * </pre>
 */
@InterfaceAudience.Public
@InterfaceStability.Stable
public class ChainReducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> extends Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {

    /**
     * Sets the {@link Reducer} class to the chain job.
     * 
     * <p>
     * The key and values are passed from one element of the chain to the next, by
     * value. For the added Reducer the configuration given for it,
     * <code>reducerConf</code>, have precedence over the job's Configuration.
     * This precedence is in effect when the task is running.
     * </p>
     * <p>
     * IMPORTANT: There is no need to specify the output key/value classes for the
     * ChainReducer, this is done by the setReducer or the addMapper for the last
     * element in the chain.
     * </p>
     * 
     * @param job
     *          the job
     * @param klass
     *          the Reducer class to add.
     * @param inputKeyClass
     *          reducer input key class.
     * @param inputValueClass
     *          reducer input value class.
     * @param outputKeyClass
     *          reducer output key class.
     * @param outputValueClass
     *          reducer output value class.
     * @param reducerConf
     *          a configuration for the Reducer class. It is recommended to use a
     *          Configuration without default values using the
     *          <code>Configuration(boolean loadDefaults)</code> constructor with
     *          FALSE.
     */
    public static void setReducer(Job job, Class<? extends Reducer> klass, Class<?> inputKeyClass,
            Class<?> inputValueClass, Class<?> outputKeyClass, Class<?> outputValueClass,
            Configuration reducerConf) {
        job.setReducerClass(ChainReducer.class);
        job.setOutputKeyClass(outputKeyClass);
        job.setOutputValueClass(outputValueClass);
        Chain.setReducer(job, klass, inputKeyClass, inputValueClass, outputKeyClass, outputValueClass, reducerConf);
    }

    /**
     * Adds a {@link Mapper} class to the chain reducer.
     * 
     * <p>
     * The key and values are passed from one element of the chain to the next, by
     * value For the added Mapper the configuration given for it,
     * <code>mapperConf</code>, have precedence over the job's Configuration. This
     * precedence is in effect when the task is running.
     * </p>
     * <p>
     * IMPORTANT: There is no need to specify the output key/value classes for the
     * ChainMapper, this is done by the addMapper for the last mapper in the
     * chain.
     * </p>
     * 
     * @param job
     *          The job.
     * @param klass
     *          the Mapper class to add.
     * @param inputKeyClass
     *          mapper input key class.
     * @param inputValueClass
     *          mapper input value class.
     * @param outputKeyClass
     *          mapper output key class.
     * @param outputValueClass
     *          mapper output value class.
     * @param mapperConf
     *          a configuration for the Mapper class. It is recommended to use a
     *          Configuration without default values using the
     *          <code>Configuration(boolean loadDefaults)</code> constructor with
     *          FALSE.
     */
    public static void addMapper(Job job, Class<? extends Mapper> klass, Class<?> inputKeyClass,
            Class<?> inputValueClass, Class<?> outputKeyClass, Class<?> outputValueClass, Configuration mapperConf)
            throws IOException {
        job.setOutputKeyClass(outputKeyClass);
        job.setOutputValueClass(outputValueClass);
        Chain.addMapper(false, job, klass, inputKeyClass, inputValueClass, outputKeyClass, outputValueClass,
                mapperConf);
    }

    private Chain chain;

    protected void setup(Context context) {
        chain = new Chain(false);
        chain.setup(context.getConfiguration());
    }

    public void run(Context context) throws IOException, InterruptedException {
        setup(context);

        // if no reducer is set, just do nothing
        if (chain.getReducer() == null) {
            return;
        }
        int numMappers = chain.getAllMappers().size();
        // if there are no mappers in chain, run the reducer
        if (numMappers == 0) {
            chain.runReducer(context);
            return;
        }

        // add reducer and all mappers with proper context
        ChainBlockingQueue<Chain.KeyValuePair<?, ?>> inputqueue;
        ChainBlockingQueue<Chain.KeyValuePair<?, ?>> outputqueue;
        // add reducer
        outputqueue = chain.createBlockingQueue();
        chain.addReducer(context, outputqueue);
        // add all mappers except last one
        for (int i = 0; i < numMappers - 1; i++) {
            inputqueue = outputqueue;
            outputqueue = chain.createBlockingQueue();
            chain.addMapper(inputqueue, outputqueue, context, i);
        }
        // add last mapper
        chain.addMapper(outputqueue, context, numMappers - 1);

        // start all threads
        chain.startAllThreads();

        // wait for all threads
        chain.joinAllThreads();
    }
}