org.apache.hadoop.hive.ql.parse.MapReduceCompiler.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.hadoop.hive.ql.parse.MapReduceCompiler.java

Source

/**
 *  Licensed to the Apache Software Foundation (ASF) under one
 *  or more contributor license agreements.  See the NOTICE file
 *  distributed with this work for additional information
 *  regarding copyright ownership.  The ASF licenses this file
 *  to you under the Apache License, Version 2.0 (the
 *  "License"); you may not use this file except in compliance
 *  with the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

package org.apache.hadoop.hive.ql.parse;

import java.io.IOException;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.fs.ContentSummary;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.PathFilter;
import org.apache.hadoop.hive.conf.HiveConf;
import org.apache.hadoop.hive.ql.Context;
import org.apache.hadoop.hive.ql.exec.ConditionalTask;
import org.apache.hadoop.hive.ql.exec.FileSinkOperator;
import org.apache.hadoop.hive.ql.exec.MapJoinOperator;
import org.apache.hadoop.hive.ql.exec.Operator;
import org.apache.hadoop.hive.ql.exec.ReduceSinkOperator;
import org.apache.hadoop.hive.ql.exec.TableScanOperator;
import org.apache.hadoop.hive.ql.exec.Task;
import org.apache.hadoop.hive.ql.exec.UnionOperator;
import org.apache.hadoop.hive.ql.exec.Utilities;
import org.apache.hadoop.hive.ql.exec.mr.ExecDriver;
import org.apache.hadoop.hive.ql.exec.mr.MapRedTask;
import org.apache.hadoop.hive.ql.hooks.ReadEntity;
import org.apache.hadoop.hive.ql.hooks.WriteEntity;
import org.apache.hadoop.hive.ql.lib.DefaultRuleDispatcher;
import org.apache.hadoop.hive.ql.lib.Dispatcher;
import org.apache.hadoop.hive.ql.lib.GraphWalker;
import org.apache.hadoop.hive.ql.lib.Node;
import org.apache.hadoop.hive.ql.lib.NodeProcessor;
import org.apache.hadoop.hive.ql.lib.Rule;
import org.apache.hadoop.hive.ql.lib.RuleRegExp;
import org.apache.hadoop.hive.ql.optimizer.GenMRFileSink1;
import org.apache.hadoop.hive.ql.optimizer.GenMROperator;
import org.apache.hadoop.hive.ql.optimizer.GenMRProcContext;
import org.apache.hadoop.hive.ql.optimizer.GenMRProcContext.GenMapRedCtx;
import org.apache.hadoop.hive.ql.optimizer.GenMRRedSink1;
import org.apache.hadoop.hive.ql.optimizer.GenMRRedSink2;
import org.apache.hadoop.hive.ql.optimizer.GenMRRedSink3;
import org.apache.hadoop.hive.ql.optimizer.GenMRTableScan1;
import org.apache.hadoop.hive.ql.optimizer.GenMRUnion1;
import org.apache.hadoop.hive.ql.optimizer.MapJoinFactory;
import org.apache.hadoop.hive.ql.optimizer.physical.PhysicalContext;
import org.apache.hadoop.hive.ql.optimizer.physical.PhysicalOptimizer;
import org.apache.hadoop.hive.ql.plan.MapWork;
import org.apache.hadoop.hive.ql.plan.MapredWork;
import org.apache.hadoop.hive.ql.plan.MoveWork;
import org.apache.hadoop.hive.ql.plan.OperatorDesc;
import org.apache.hadoop.hive.shims.ShimLoader;

public class MapReduceCompiler extends TaskCompiler {

    protected final Log LOG = LogFactory.getLog(MapReduceCompiler.class);

    public MapReduceCompiler() {
    }

    // loop over all the tasks recursively
    @Override
    protected void setInputFormat(Task<? extends Serializable> task) {
        if (task instanceof ExecDriver) {
            MapWork work = ((MapredWork) task.getWork()).getMapWork();
            HashMap<String, Operator<? extends OperatorDesc>> opMap = work.getAliasToWork();
            if (!opMap.isEmpty()) {
                for (Operator<? extends OperatorDesc> op : opMap.values()) {
                    setInputFormat(work, op);
                }
            }
        } else if (task instanceof ConditionalTask) {
            List<Task<? extends Serializable>> listTasks = ((ConditionalTask) task).getListTasks();
            for (Task<? extends Serializable> tsk : listTasks) {
                setInputFormat(tsk);
            }
        }

        if (task.getChildTasks() != null) {
            for (Task<? extends Serializable> childTask : task.getChildTasks()) {
                setInputFormat(childTask);
            }
        }
    }

    private void setInputFormat(MapWork work, Operator<? extends OperatorDesc> op) {
        if (op.isUseBucketizedHiveInputFormat()) {
            work.setUseBucketizedHiveInputFormat(true);
            return;
        }

        if (op.getChildOperators() != null) {
            for (Operator<? extends OperatorDesc> childOp : op.getChildOperators()) {
                setInputFormat(work, childOp);
            }
        }
    }

    // loop over all the tasks recursively
    private void breakTaskTree(Task<? extends Serializable> task) {

        if (task instanceof ExecDriver) {
            HashMap<String, Operator<? extends OperatorDesc>> opMap = ((MapredWork) task.getWork()).getMapWork()
                    .getAliasToWork();
            if (!opMap.isEmpty()) {
                for (Operator<? extends OperatorDesc> op : opMap.values()) {
                    breakOperatorTree(op);
                }
            }
        } else if (task instanceof ConditionalTask) {
            List<Task<? extends Serializable>> listTasks = ((ConditionalTask) task).getListTasks();
            for (Task<? extends Serializable> tsk : listTasks) {
                breakTaskTree(tsk);
            }
        }

        if (task.getChildTasks() == null) {
            return;
        }

        for (Task<? extends Serializable> childTask : task.getChildTasks()) {
            breakTaskTree(childTask);
        }
    }

    // loop over all the operators recursively
    private void breakOperatorTree(Operator<? extends OperatorDesc> topOp) {
        if (topOp instanceof ReduceSinkOperator) {
            topOp.setChildOperators(null);
        }

        for (Operator<? extends OperatorDesc> op : topOp.getChildOperators()) {
            breakOperatorTree(op);
        }
    }

    /**
     * Make a best guess at trying to find the number of reducers
     */
    private static int getNumberOfReducers(MapredWork mrwork, HiveConf conf) {
        if (mrwork.getReduceWork() == null) {
            return 0;
        }

        if (mrwork.getReduceWork().getNumReduceTasks() >= 0) {
            return mrwork.getReduceWork().getNumReduceTasks();
        }

        return conf.getIntVar(HiveConf.ConfVars.HADOOPNUMREDUCERS);
    }

    @Override
    protected void decideExecMode(List<Task<? extends Serializable>> rootTasks, Context ctx,
            GlobalLimitCtx globalLimitCtx) throws SemanticException {

        // bypass for explain queries for now
        if (ctx.getExplain()) {
            return;
        }

        // user has told us to run in local mode or doesn't want auto-local mode
        if (ctx.isLocalOnlyExecutionMode() || !conf.getBoolVar(HiveConf.ConfVars.LOCALMODEAUTO)) {
            return;
        }

        final Context lCtx = ctx;
        PathFilter p = new PathFilter() {
            @Override
            public boolean accept(Path file) {
                return !lCtx.isMRTmpFileURI(file.toUri().getPath());
            }
        };
        List<ExecDriver> mrtasks = Utilities.getMRTasks(rootTasks);

        // map-reduce jobs will be run locally based on data size
        // first find out if any of the jobs needs to run non-locally
        boolean hasNonLocalJob = false;
        for (ExecDriver mrtask : mrtasks) {
            try {
                ContentSummary inputSummary = Utilities.getInputSummary(ctx, mrtask.getWork().getMapWork(), p);
                int numReducers = getNumberOfReducers(mrtask.getWork(), conf);

                long estimatedInput;

                if (globalLimitCtx != null && globalLimitCtx.isEnable()) {
                    // If the global limit optimization is triggered, we will
                    // estimate input data actually needed based on limit rows.
                    // estimated Input = (num_limit * max_size_per_row) * (estimated_map + 2)
                    //
                    long sizePerRow = HiveConf.getLongVar(conf, HiveConf.ConfVars.HIVELIMITMAXROWSIZE);
                    estimatedInput = globalLimitCtx.getGlobalLimit() * sizePerRow;
                    long minSplitSize = HiveConf.getLongVar(conf, HiveConf.ConfVars.MAPREDMINSPLITSIZE);
                    long estimatedNumMap = inputSummary.getLength() / minSplitSize + 1;
                    estimatedInput = estimatedInput * (estimatedNumMap + 1);
                } else {
                    estimatedInput = inputSummary.getLength();
                }

                if (LOG.isDebugEnabled()) {
                    LOG.debug("Task: " + mrtask.getId() + ", Summary: " + inputSummary.getLength() + ","
                            + inputSummary.getFileCount() + "," + numReducers + ", estimated Input: "
                            + estimatedInput);
                }

                if (MapRedTask.isEligibleForLocalMode(conf, numReducers, estimatedInput,
                        inputSummary.getFileCount()) != null) {
                    hasNonLocalJob = true;
                    break;
                } else {
                    mrtask.setLocalMode(true);
                }
            } catch (IOException e) {
                throw new SemanticException(e);
            }
        }

        if (!hasNonLocalJob) {
            // Entire query can be run locally.
            // Save the current tracker value and restore it when done.
            ctx.setOriginalTracker(ShimLoader.getHadoopShims().getJobLauncherRpcAddress(conf));
            ShimLoader.getHadoopShims().setJobLauncherRpcAddress(conf, "local");
            console.printInfo("Automatically selecting local only mode for query");
        }
    }

    @Override
    protected void optimizeTaskPlan(List<Task<? extends Serializable>> rootTasks, ParseContext pCtx, Context ctx)
            throws SemanticException {
        // reduce sink does not have any kids - since the plan by now has been
        // broken up into multiple
        // tasks, iterate over all tasks.
        // For each task, go over all operators recursively
        for (Task<? extends Serializable> rootTask : rootTasks) {
            breakTaskTree(rootTask);
        }

        PhysicalContext physicalContext = new PhysicalContext(conf, getParseContext(pCtx, rootTasks), ctx,
                rootTasks, pCtx.getFetchTask());
        PhysicalOptimizer physicalOptimizer = new PhysicalOptimizer(physicalContext, conf);
        physicalOptimizer.optimize();

    }

    @Override
    protected void generateTaskTree(List<Task<? extends Serializable>> rootTasks, ParseContext pCtx,
            List<Task<MoveWork>> mvTask, Set<ReadEntity> inputs, Set<WriteEntity> outputs)
            throws SemanticException {

        // generate map reduce plans
        ParseContext tempParseContext = getParseContext(pCtx, rootTasks);
        GenMRProcContext procCtx = new GenMRProcContext(conf,
                // Must be deterministic order map for consistent q-test output across Java versions
                new LinkedHashMap<Operator<? extends OperatorDesc>, Task<? extends Serializable>>(),
                tempParseContext, mvTask, rootTasks,
                new LinkedHashMap<Operator<? extends OperatorDesc>, GenMapRedCtx>(), inputs, outputs);

        // create a walker which walks the tree in a DFS manner while maintaining
        // the operator stack.
        // The dispatcher generates the plan from the operator tree
        Map<Rule, NodeProcessor> opRules = new LinkedHashMap<Rule, NodeProcessor>();
        opRules.put(new RuleRegExp(new String("R1"), TableScanOperator.getOperatorName() + "%"),
                new GenMRTableScan1());
        opRules.put(
                new RuleRegExp(new String("R2"),
                        TableScanOperator.getOperatorName() + "%.*" + ReduceSinkOperator.getOperatorName() + "%"),
                new GenMRRedSink1());
        opRules.put(
                new RuleRegExp(new String("R3"),
                        ReduceSinkOperator.getOperatorName() + "%.*" + ReduceSinkOperator.getOperatorName() + "%"),
                new GenMRRedSink2());
        opRules.put(new RuleRegExp(new String("R4"), FileSinkOperator.getOperatorName() + "%"),
                new GenMRFileSink1());
        opRules.put(new RuleRegExp(new String("R5"), UnionOperator.getOperatorName() + "%"), new GenMRUnion1());
        opRules.put(
                new RuleRegExp(new String("R6"),
                        UnionOperator.getOperatorName() + "%.*" + ReduceSinkOperator.getOperatorName() + "%"),
                new GenMRRedSink3());
        opRules.put(new RuleRegExp(new String("R7"), MapJoinOperator.getOperatorName() + "%"),
                MapJoinFactory.getTableScanMapJoin());

        // The dispatcher fires the processor corresponding to the closest matching
        // rule and passes the context along
        Dispatcher disp = new DefaultRuleDispatcher(new GenMROperator(), opRules, procCtx);

        GraphWalker ogw = new GenMapRedWalker(disp);
        ArrayList<Node> topNodes = new ArrayList<Node>();
        topNodes.addAll(pCtx.getTopOps().values());
        ogw.startWalking(topNodes, null);
    }
}