org.apache.hadoop.hive.ql.optimizer.physical.GenSparkSkewJoinProcessor.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.hadoop.hive.ql.optimizer.physical.GenSparkSkewJoinProcessor.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.hive.ql.optimizer.physical;

import com.google.common.base.Preconditions;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hive.conf.HiveConf;
import org.apache.hadoop.hive.ql.exec.ColumnInfo;
import org.apache.hadoop.hive.ql.exec.ConditionalTask;
import org.apache.hadoop.hive.ql.exec.HashTableDummyOperator;
import org.apache.hadoop.hive.ql.exec.JoinOperator;
import org.apache.hadoop.hive.ql.exec.MapJoinOperator;
import org.apache.hadoop.hive.ql.exec.Operator;
import org.apache.hadoop.hive.ql.exec.OperatorFactory;
import org.apache.hadoop.hive.ql.exec.RowSchema;
import org.apache.hadoop.hive.ql.exec.SparkHashTableSinkOperator;
import org.apache.hadoop.hive.ql.exec.TableScanOperator;
import org.apache.hadoop.hive.ql.exec.Task;
import org.apache.hadoop.hive.ql.exec.TaskFactory;
import org.apache.hadoop.hive.ql.exec.Utilities;
import org.apache.hadoop.hive.ql.exec.spark.SparkTask;
import org.apache.hadoop.hive.ql.io.HiveInputFormat;
import org.apache.hadoop.hive.ql.optimizer.GenMapRedUtils;
import org.apache.hadoop.hive.ql.parse.ParseContext;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.ql.parse.spark.GenSparkUtils;
import org.apache.hadoop.hive.ql.plan.BaseWork;
import org.apache.hadoop.hive.ql.plan.ConditionalResolverSkewJoin;
import org.apache.hadoop.hive.ql.plan.ConditionalWork;
import org.apache.hadoop.hive.ql.plan.ExprNodeColumnDesc;
import org.apache.hadoop.hive.ql.plan.ExprNodeDesc;
import org.apache.hadoop.hive.ql.plan.HashTableDummyDesc;
import org.apache.hadoop.hive.ql.plan.JoinDesc;
import org.apache.hadoop.hive.ql.plan.MapJoinDesc;
import org.apache.hadoop.hive.ql.plan.MapWork;
import org.apache.hadoop.hive.ql.plan.OperatorDesc;
import org.apache.hadoop.hive.ql.plan.PartitionDesc;
import org.apache.hadoop.hive.ql.plan.PlanUtils;
import org.apache.hadoop.hive.ql.plan.ReduceWork;
import org.apache.hadoop.hive.ql.plan.SparkEdgeProperty;
import org.apache.hadoop.hive.ql.plan.SparkHashTableSinkDesc;
import org.apache.hadoop.hive.ql.plan.SparkWork;
import org.apache.hadoop.hive.ql.plan.TableDesc;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoFactory;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * Copied from GenMRSkewJoinProcessor. It's used for spark task
 *
 */
public class GenSparkSkewJoinProcessor {
    private static final Log LOG = LogFactory.getLog(GenSparkSkewJoinProcessor.class.getName());

    private GenSparkSkewJoinProcessor() {
        // prevent instantiation
    }

    @SuppressWarnings("unchecked")
    public static void processSkewJoin(JoinOperator joinOp, Task<? extends Serializable> currTask,
            ReduceWork reduceWork, ParseContext parseCtx) throws SemanticException {

        SparkWork currentWork = ((SparkTask) currTask).getWork();
        if (currentWork.getChildren(reduceWork).size() > 0) {
            LOG.warn("Skip runtime skew join as the ReduceWork has child work and hasn't been split.");
            return;
        }

        List<Task<? extends Serializable>> children = currTask.getChildTasks();

        Task<? extends Serializable> child = children != null && children.size() == 1 ? children.get(0) : null;

        Path baseTmpDir = parseCtx.getContext().getMRTmpPath();

        JoinDesc joinDescriptor = joinOp.getConf();
        Map<Byte, List<ExprNodeDesc>> joinValues = joinDescriptor.getExprs();
        int numAliases = joinValues.size();

        Map<Byte, Path> bigKeysDirMap = new HashMap<Byte, Path>();
        Map<Byte, Map<Byte, Path>> smallKeysDirMap = new HashMap<Byte, Map<Byte, Path>>();
        Map<Byte, Path> skewJoinJobResultsDir = new HashMap<Byte, Path>();
        Byte[] tags = joinDescriptor.getTagOrder();
        // for each joining table, set dir for big key and small keys properly
        for (int i = 0; i < numAliases; i++) {
            Byte alias = tags[i];
            bigKeysDirMap.put(alias, GenMRSkewJoinProcessor.getBigKeysDir(baseTmpDir, alias));
            Map<Byte, Path> smallKeysMap = new HashMap<Byte, Path>();
            smallKeysDirMap.put(alias, smallKeysMap);
            for (Byte src2 : tags) {
                if (!src2.equals(alias)) {
                    smallKeysMap.put(src2, GenMRSkewJoinProcessor.getSmallKeysDir(baseTmpDir, alias, src2));
                }
            }
            skewJoinJobResultsDir.put(alias, GenMRSkewJoinProcessor.getBigKeysSkewJoinResultDir(baseTmpDir, alias));
        }

        joinDescriptor.setHandleSkewJoin(true);
        joinDescriptor.setBigKeysDirMap(bigKeysDirMap);
        joinDescriptor.setSmallKeysDirMap(smallKeysDirMap);
        joinDescriptor
                .setSkewKeyDefinition(HiveConf.getIntVar(parseCtx.getConf(), HiveConf.ConfVars.HIVESKEWJOINKEY));

        // create proper table/column desc for spilled tables
        TableDesc keyTblDesc = (TableDesc) reduceWork.getKeyDesc().clone();
        List<String> joinKeys = Utilities.getColumnNames(keyTblDesc.getProperties());
        List<String> joinKeyTypes = Utilities.getColumnTypes(keyTblDesc.getProperties());

        Map<Byte, TableDesc> tableDescList = new HashMap<Byte, TableDesc>();
        Map<Byte, RowSchema> rowSchemaList = new HashMap<Byte, RowSchema>();
        Map<Byte, List<ExprNodeDesc>> newJoinValues = new HashMap<Byte, List<ExprNodeDesc>>();
        Map<Byte, List<ExprNodeDesc>> newJoinKeys = new HashMap<Byte, List<ExprNodeDesc>>();
        // used for create mapJoinDesc, should be in order
        List<TableDesc> newJoinValueTblDesc = new ArrayList<TableDesc>();

        for (int i = 0; i < tags.length; i++) {
            newJoinValueTblDesc.add(null);
        }

        for (int i = 0; i < numAliases; i++) {
            Byte alias = tags[i];
            List<ExprNodeDesc> valueCols = joinValues.get(alias);
            String colNames = "";
            String colTypes = "";
            int columnSize = valueCols.size();
            List<ExprNodeDesc> newValueExpr = new ArrayList<ExprNodeDesc>();
            List<ExprNodeDesc> newKeyExpr = new ArrayList<ExprNodeDesc>();
            ArrayList<ColumnInfo> columnInfos = new ArrayList<ColumnInfo>();

            boolean first = true;
            for (int k = 0; k < columnSize; k++) {
                TypeInfo type = valueCols.get(k).getTypeInfo();
                String newColName = i + "_VALUE_" + k; // any name, it does not matter.
                ColumnInfo columnInfo = new ColumnInfo(newColName, type, alias.toString(), false);
                columnInfos.add(columnInfo);
                newValueExpr.add(new ExprNodeColumnDesc(columnInfo.getType(), columnInfo.getInternalName(),
                        columnInfo.getTabAlias(), false));
                if (!first) {
                    colNames = colNames + ",";
                    colTypes = colTypes + ",";
                }
                first = false;
                colNames = colNames + newColName;
                colTypes = colTypes + valueCols.get(k).getTypeString();
            }

            // we are putting join keys at last part of the spilled table
            for (int k = 0; k < joinKeys.size(); k++) {
                if (!first) {
                    colNames = colNames + ",";
                    colTypes = colTypes + ",";
                }
                first = false;
                colNames = colNames + joinKeys.get(k);
                colTypes = colTypes + joinKeyTypes.get(k);
                ColumnInfo columnInfo = new ColumnInfo(joinKeys.get(k),
                        TypeInfoFactory.getPrimitiveTypeInfo(joinKeyTypes.get(k)), alias.toString(), false);
                columnInfos.add(columnInfo);
                newKeyExpr.add(new ExprNodeColumnDesc(columnInfo.getType(), columnInfo.getInternalName(),
                        columnInfo.getTabAlias(), false));
            }

            newJoinValues.put(alias, newValueExpr);
            newJoinKeys.put(alias, newKeyExpr);
            tableDescList.put(alias, Utilities.getTableDesc(colNames, colTypes));
            rowSchemaList.put(alias, new RowSchema(columnInfos));

            // construct value table Desc
            String valueColNames = "";
            String valueColTypes = "";
            first = true;
            for (int k = 0; k < columnSize; k++) {
                String newColName = i + "_VALUE_" + k; // any name, it does not matter.
                if (!first) {
                    valueColNames = valueColNames + ",";
                    valueColTypes = valueColTypes + ",";
                }
                valueColNames = valueColNames + newColName;
                valueColTypes = valueColTypes + valueCols.get(k).getTypeString();
                first = false;
            }
            newJoinValueTblDesc.set((byte) i, Utilities.getTableDesc(valueColNames, valueColTypes));
        }

        joinDescriptor.setSkewKeysValuesTables(tableDescList);
        joinDescriptor.setKeyTableDesc(keyTblDesc);

        // create N-1 map join tasks
        HashMap<Path, Task<? extends Serializable>> bigKeysDirToTaskMap = new HashMap<Path, Task<? extends Serializable>>();
        List<Serializable> listWorks = new ArrayList<Serializable>();
        List<Task<? extends Serializable>> listTasks = new ArrayList<Task<? extends Serializable>>();
        for (int i = 0; i < numAliases - 1; i++) {
            Byte src = tags[i];
            HiveConf hiveConf = new HiveConf(parseCtx.getConf(), GenSparkSkewJoinProcessor.class);
            SparkWork sparkWork = new SparkWork(parseCtx.getConf().getVar(HiveConf.ConfVars.HIVEQUERYID));
            Task<? extends Serializable> skewJoinMapJoinTask = TaskFactory.get(sparkWork, hiveConf);
            skewJoinMapJoinTask.setFetchSource(currTask.isFetchSource());

            // create N TableScans
            Operator<? extends OperatorDesc>[] parentOps = new TableScanOperator[tags.length];
            for (int k = 0; k < tags.length; k++) {
                Operator<? extends OperatorDesc> ts = GenMapRedUtils
                        .createTemporaryTableScanOperator(rowSchemaList.get((byte) k));
                ((TableScanOperator) ts).setTableDesc(tableDescList.get((byte) k));
                parentOps[k] = ts;
            }

            // create the MapJoinOperator
            String dumpFilePrefix = "mapfile" + PlanUtils.getCountForMapJoinDumpFilePrefix();
            MapJoinDesc mapJoinDescriptor = new MapJoinDesc(newJoinKeys, keyTblDesc, newJoinValues,
                    newJoinValueTblDesc, newJoinValueTblDesc, joinDescriptor.getOutputColumnNames(), i,
                    joinDescriptor.getConds(), joinDescriptor.getFilters(), joinDescriptor.getNoOuterJoin(),
                    dumpFilePrefix);
            mapJoinDescriptor.setTagOrder(tags);
            mapJoinDescriptor.setHandleSkewJoin(false);
            mapJoinDescriptor.setNullSafes(joinDescriptor.getNullSafes());
            // temporarily, mark it as child of all the TS
            MapJoinOperator mapJoinOp = (MapJoinOperator) OperatorFactory.getAndMakeChild(mapJoinDescriptor, null,
                    parentOps);

            // clone the original join operator, and replace it with the MJ
            // this makes sure MJ has the same downstream operator plan as the original join
            List<Operator<?>> reducerList = new ArrayList<Operator<?>>();
            reducerList.add(reduceWork.getReducer());
            Operator<? extends OperatorDesc> reducer = Utilities.cloneOperatorTree(parseCtx.getConf(), reducerList)
                    .get(0);
            Preconditions.checkArgument(reducer instanceof JoinOperator,
                    "Reducer should be join operator, but actually is " + reducer.getName());
            JoinOperator cloneJoinOp = (JoinOperator) reducer;
            List<Operator<? extends OperatorDesc>> childOps = cloneJoinOp.getChildOperators();
            for (Operator<? extends OperatorDesc> childOp : childOps) {
                childOp.replaceParent(cloneJoinOp, mapJoinOp);
            }
            mapJoinOp.setChildOperators(childOps);

            // set memory usage for the MJ operator
            setMemUsage(mapJoinOp, skewJoinMapJoinTask, parseCtx);

            // create N MapWorks and add them to the SparkWork
            MapWork bigMapWork = null;
            Map<Byte, Path> smallTblDirs = smallKeysDirMap.get(src);
            for (int j = 0; j < tags.length; j++) {
                MapWork mapWork = PlanUtils.getMapRedWork().getMapWork();
                sparkWork.add(mapWork);
                // This code has been only added for testing
                boolean mapperCannotSpanPartns = parseCtx.getConf()
                        .getBoolVar(HiveConf.ConfVars.HIVE_MAPPER_CANNOT_SPAN_MULTIPLE_PARTITIONS);
                mapWork.setMapperCannotSpanPartns(mapperCannotSpanPartns);
                Operator<? extends OperatorDesc> tableScan = parentOps[j];
                String alias = tags[j].toString();
                ArrayList<String> aliases = new ArrayList<String>();
                aliases.add(alias);
                Path path;
                if (j == i) {
                    path = bigKeysDirMap.get(tags[j]);
                    bigKeysDirToTaskMap.put(path, skewJoinMapJoinTask);
                    bigMapWork = mapWork;
                } else {
                    path = smallTblDirs.get(tags[j]);
                }
                mapWork.getPathToAliases().put(path.toString(), aliases);
                mapWork.getAliasToWork().put(alias, tableScan);
                PartitionDesc partitionDesc = new PartitionDesc(tableDescList.get(tags[j]), null);
                mapWork.getPathToPartitionInfo().put(path.toString(), partitionDesc);
                mapWork.getAliasToPartnInfo().put(alias, partitionDesc);
                mapWork.setName("Map " + GenSparkUtils.getUtils().getNextSeqNumber());
            }
            // connect all small dir map work to the big dir map work
            Preconditions.checkArgument(bigMapWork != null, "Haven't identified big dir MapWork");
            // these 2 flags are intended only for the big-key map work
            bigMapWork
                    .setNumMapTasks(HiveConf.getIntVar(hiveConf, HiveConf.ConfVars.HIVESKEWJOINMAPJOINNUMMAPTASK));
            bigMapWork
                    .setMinSplitSize(HiveConf.getLongVar(hiveConf, HiveConf.ConfVars.HIVESKEWJOINMAPJOINMINSPLIT));
            // use HiveInputFormat so that we can control the number of map tasks
            bigMapWork.setInputformat(HiveInputFormat.class.getName());
            for (BaseWork work : sparkWork.getRoots()) {
                Preconditions.checkArgument(work instanceof MapWork,
                        "All root work should be MapWork, but got " + work.getClass().getSimpleName());
                if (work != bigMapWork) {
                    sparkWork.connect(work, bigMapWork, new SparkEdgeProperty(SparkEdgeProperty.SHUFFLE_NONE));
                }
            }

            // insert SparkHashTableSink and Dummy operators
            for (int j = 0; j < tags.length; j++) {
                if (j != i) {
                    insertSHTS(tags[j], (TableScanOperator) parentOps[j], bigMapWork);
                }
            }

            listWorks.add(skewJoinMapJoinTask.getWork());
            listTasks.add(skewJoinMapJoinTask);
        }
        if (children != null) {
            for (Task<? extends Serializable> tsk : listTasks) {
                for (Task<? extends Serializable> oldChild : children) {
                    tsk.addDependentTask(oldChild);
                }
            }
        }
        if (child != null) {
            currTask.removeDependentTask(child);
            listTasks.add(child);
            listWorks.add(child.getWork());
        }
        ConditionalResolverSkewJoin.ConditionalResolverSkewJoinCtx context = new ConditionalResolverSkewJoin.ConditionalResolverSkewJoinCtx(
                bigKeysDirToTaskMap, child);

        ConditionalWork cndWork = new ConditionalWork(listWorks);
        ConditionalTask cndTsk = (ConditionalTask) TaskFactory.get(cndWork, parseCtx.getConf());
        cndTsk.setListTasks(listTasks);
        cndTsk.setResolver(new ConditionalResolverSkewJoin());
        cndTsk.setResolverCtx(context);
        currTask.setChildTasks(new ArrayList<Task<? extends Serializable>>());
        currTask.addDependentTask(cndTsk);
    }

    /**
     * Insert SparkHashTableSink and HashTableDummy between small dir TS and MJ.
     */
    @SuppressWarnings("unchecked")
    private static void insertSHTS(byte tag, TableScanOperator tableScan, MapWork bigMapWork) {
        Preconditions.checkArgument(tableScan.getChildOperators().size() == 1
                && tableScan.getChildOperators().get(0) instanceof MapJoinOperator);
        HashTableDummyDesc desc = new HashTableDummyDesc();
        HashTableDummyOperator dummyOp = (HashTableDummyOperator) OperatorFactory.get(desc);
        dummyOp.getConf().setTbl(tableScan.getTableDesc());
        MapJoinOperator mapJoinOp = (MapJoinOperator) tableScan.getChildOperators().get(0);
        mapJoinOp.replaceParent(tableScan, dummyOp);
        List<Operator<? extends OperatorDesc>> mapJoinChildren = new ArrayList<Operator<? extends OperatorDesc>>();
        mapJoinChildren.add(mapJoinOp);
        dummyOp.setChildOperators(mapJoinChildren);
        bigMapWork.addDummyOp(dummyOp);
        MapJoinDesc mjDesc = mapJoinOp.getConf();
        // mapjoin should not be affected by join reordering
        mjDesc.resetOrder();
        SparkHashTableSinkDesc hashTableSinkDesc = new SparkHashTableSinkDesc(mjDesc);
        SparkHashTableSinkOperator hashTableSinkOp = (SparkHashTableSinkOperator) OperatorFactory
                .get(hashTableSinkDesc);
        int[] valueIndex = mjDesc.getValueIndex(tag);
        if (valueIndex != null) {
            List<ExprNodeDesc> newValues = new ArrayList<ExprNodeDesc>();
            List<ExprNodeDesc> values = hashTableSinkDesc.getExprs().get(tag);
            for (int index = 0; index < values.size(); index++) {
                if (valueIndex[index] < 0) {
                    newValues.add(values.get(index));
                }
            }
            hashTableSinkDesc.getExprs().put(tag, newValues);
        }
        tableScan.replaceChild(mapJoinOp, hashTableSinkOp);
        List<Operator<? extends OperatorDesc>> tableScanParents = new ArrayList<Operator<? extends OperatorDesc>>();
        tableScanParents.add(tableScan);
        hashTableSinkOp.setParentOperators(tableScanParents);
        hashTableSinkOp.getConf().setTag(tag);
    }

    private static void setMemUsage(MapJoinOperator mapJoinOp, Task<? extends Serializable> task,
            ParseContext parseContext) {
        MapJoinResolver.LocalMapJoinProcCtx context = new MapJoinResolver.LocalMapJoinProcCtx(task, parseContext);
        try {
            new LocalMapJoinProcFactory.LocalMapJoinProcessor().hasGroupBy(mapJoinOp, context);
        } catch (Exception e) {
            LOG.warn("Error setting memory usage.", e);
            return;
        }
        MapJoinDesc mapJoinDesc = mapJoinOp.getConf();
        HiveConf conf = context.getParseCtx().getConf();
        float hashtableMemoryUsage;
        if (context.isFollowedByGroupBy()) {
            hashtableMemoryUsage = conf.getFloatVar(HiveConf.ConfVars.HIVEHASHTABLEFOLLOWBYGBYMAXMEMORYUSAGE);
        } else {
            hashtableMemoryUsage = conf.getFloatVar(HiveConf.ConfVars.HIVEHASHTABLEMAXMEMORYUSAGE);
        }
        mapJoinDesc.setHashTableMemoryUsage(hashtableMemoryUsage);
    }
}