org.apache.hadoop.hive.ql.exec.tez.SplitGrouper.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.hadoop.hive.ql.exec.tez.SplitGrouper.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.hive.ql.exec.tez;

import java.io.IOException;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.concurrent.ConcurrentHashMap;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hive.ql.exec.Utilities;
import org.apache.hadoop.hive.ql.io.HiveFileFormatUtils;
import org.apache.hadoop.hive.ql.io.HiveInputFormat;
import org.apache.hadoop.hive.ql.plan.MapWork;
import org.apache.hadoop.hive.ql.plan.PartitionDesc;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapred.InputSplit;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.split.SplitLocationProvider;
import org.apache.hadoop.mapred.split.TezGroupedSplit;
import org.apache.hadoop.mapred.split.TezMapredSplitsGrouper;
import org.apache.tez.dag.api.TaskLocationHint;

import com.google.common.collect.ArrayListMultimap;
import com.google.common.collect.Lists;
import com.google.common.collect.Multimap;

/**
 * SplitGrouper is used to combine splits based on head room and locality. It
 * also enforces restrictions around schema, file format and bucketing.
 */
public class SplitGrouper {

    private static final Logger LOG = LoggerFactory.getLogger(SplitGrouper.class);

    // TODO This needs to be looked at. Map of Map to Map... Made concurrent for now since split generation
    // can happen in parallel.
    private static final Map<Map<Path, PartitionDesc>, Map<Path, PartitionDesc>> cache = new ConcurrentHashMap<>();

    private final TezMapredSplitsGrouper tezGrouper = new TezMapredSplitsGrouper();

    /**
     * group splits for each bucket separately - while evenly filling all the
     * available slots with tasks
     */
    public Multimap<Integer, InputSplit> group(Configuration conf,
            Multimap<Integer, InputSplit> bucketSplitMultimap, int availableSlots, float waves,
            SplitLocationProvider splitLocationProvider) throws IOException {

        // figure out how many tasks we want for each bucket
        Map<Integer, Integer> bucketTaskMap = estimateBucketSizes(availableSlots, waves,
                bucketSplitMultimap.asMap());

        // allocate map bucket id to grouped splits
        Multimap<Integer, InputSplit> bucketGroupedSplitMultimap = ArrayListMultimap.<Integer, InputSplit>create();

        // use the tez grouper to combine splits once per bucket
        for (int bucketId : bucketSplitMultimap.keySet()) {
            Collection<InputSplit> inputSplitCollection = bucketSplitMultimap.get(bucketId);

            InputSplit[] rawSplits = inputSplitCollection.toArray(new InputSplit[0]);
            InputSplit[] groupedSplits = tezGrouper.getGroupedSplits(conf, rawSplits, bucketTaskMap.get(bucketId),
                    HiveInputFormat.class.getName(), new ColumnarSplitSizeEstimator(), splitLocationProvider);

            LOG.info("Original split count is " + rawSplits.length + " grouped split count is "
                    + groupedSplits.length + ", for bucket: " + bucketId);

            for (InputSplit inSplit : groupedSplits) {
                bucketGroupedSplitMultimap.put(bucketId, inSplit);
            }
        }

        return bucketGroupedSplitMultimap;
    }

    /**
     * Create task location hints from a set of input splits
     * @param splits the actual splits
     * @param consistentLocations whether to re-order locations for each split, if it's a file split
     * @return taskLocationHints - 1 per input split specified
     * @throws IOException
     */
    public List<TaskLocationHint> createTaskLocationHints(InputSplit[] splits, boolean consistentLocations)
            throws IOException {

        List<TaskLocationHint> locationHints = Lists.newArrayListWithCapacity(splits.length);

        for (InputSplit split : splits) {
            String rack = (split instanceof TezGroupedSplit) ? ((TezGroupedSplit) split).getRack() : null;
            if (rack == null) {
                String[] locations = split.getLocations();
                if (locations != null && locations.length > 0) {
                    // Worthwhile only if more than 1 split, consistentGroupingEnabled and is a FileSplit
                    if (consistentLocations && locations.length > 1 && split instanceof FileSplit) {
                        Arrays.sort(locations);
                        FileSplit fileSplit = (FileSplit) split;
                        Path path = fileSplit.getPath();
                        long startLocation = fileSplit.getStart();
                        int hashCode = Objects.hash(path, startLocation);
                        int startIndex = hashCode % locations.length;
                        LinkedHashSet<String> locationSet = new LinkedHashSet<>(locations.length);
                        // Set up the locations starting from startIndex, and wrapping around the sorted array.
                        for (int i = 0; i < locations.length; i++) {
                            int index = (startIndex + i) % locations.length;
                            locationSet.add(locations[index]);
                        }
                        locationHints.add(TaskLocationHint.createTaskLocationHint(locationSet, null));
                    } else {
                        locationHints.add(TaskLocationHint.createTaskLocationHint(
                                new LinkedHashSet<String>(Arrays.asList(split.getLocations())), null));
                    }
                } else {
                    locationHints.add(TaskLocationHint.createTaskLocationHint(null, null));
                }
            } else {
                locationHints.add(TaskLocationHint.createTaskLocationHint(null, Collections.singleton(rack)));
            }
        }

        return locationHints;
    }

    /** Generate groups of splits, separated by schema evolution boundaries */
    public Multimap<Integer, InputSplit> generateGroupedSplits(JobConf jobConf, Configuration conf,
            InputSplit[] splits, float waves, int availableSlots, SplitLocationProvider locationProvider)
            throws Exception {
        return generateGroupedSplits(jobConf, conf, splits, waves, availableSlots, null, true, locationProvider);
    }

    /** Generate groups of splits, separated by schema evolution boundaries */
    public Multimap<Integer, InputSplit> generateGroupedSplits(JobConf jobConf, Configuration conf,
            InputSplit[] splits, float waves, int availableSlots, String inputName, boolean groupAcrossFiles,
            SplitLocationProvider locationProvider) throws Exception {

        MapWork work = populateMapWork(jobConf, inputName);
        // ArrayListMultimap is important here to retain the ordering for the splits.
        Multimap<Integer, InputSplit> bucketSplitMultiMap = ArrayListMultimap.<Integer, InputSplit>create();

        int i = 0;
        InputSplit prevSplit = null;
        for (InputSplit s : splits) {
            // this is the bit where we make sure we don't group across partition
            // schema boundaries
            if (schemaEvolved(s, prevSplit, groupAcrossFiles, work)) {
                ++i;
                prevSplit = s;
            }
            bucketSplitMultiMap.put(i, s);
        }
        LOG.info("# Src groups for split generation: " + (i + 1));

        // group them into the chunks we want
        Multimap<Integer, InputSplit> groupedSplits = this.group(jobConf, bucketSplitMultiMap, availableSlots,
                waves, locationProvider);

        return groupedSplits;
    }

    /**
     * get the size estimates for each bucket in tasks. This is used to make sure
     * we allocate the head room evenly
     */
    private Map<Integer, Integer> estimateBucketSizes(int availableSlots, float waves,
            Map<Integer, Collection<InputSplit>> bucketSplitMap) {

        // mapping of bucket id to size of all splits in bucket in bytes
        Map<Integer, Long> bucketSizeMap = new HashMap<Integer, Long>();

        // mapping of bucket id to number of required tasks to run
        Map<Integer, Integer> bucketTaskMap = new HashMap<Integer, Integer>();

        // TODO HIVE-12255. Make use of SplitSizeEstimator.
        // The actual task computation needs to be looked at as well.
        // compute the total size per bucket
        long totalSize = 0;
        boolean earlyExit = false;
        for (int bucketId : bucketSplitMap.keySet()) {
            long size = 0;
            for (InputSplit s : bucketSplitMap.get(bucketId)) {
                // the incoming split may not be a file split when we are re-grouping TezGroupedSplits in
                // the case of SMB join. So in this case, we can do an early exit by not doing the
                // calculation for bucketSizeMap. Each bucket will assume it can fill availableSlots * waves
                // (preset to 0.5) for SMB join.
                if (!(s instanceof FileSplit)) {
                    bucketTaskMap.put(bucketId, (int) (availableSlots * waves));
                    earlyExit = true;
                    continue;
                }
                FileSplit fsplit = (FileSplit) s;
                size += fsplit.getLength();
                totalSize += fsplit.getLength();
            }
            bucketSizeMap.put(bucketId, size);
        }

        if (earlyExit) {
            return bucketTaskMap;
        }

        // compute the number of tasks
        for (int bucketId : bucketSizeMap.keySet()) {
            int numEstimatedTasks = 0;
            if (totalSize != 0) {
                // availableSlots * waves => desired slots to fill
                // sizePerBucket/totalSize => weight for particular bucket. weights add
                // up to 1.
                numEstimatedTasks = (int) (availableSlots * waves * bucketSizeMap.get(bucketId) / totalSize);
            }

            LOG.info("Estimated number of tasks: " + numEstimatedTasks + " for bucket " + bucketId);
            if (numEstimatedTasks == 0) {
                numEstimatedTasks = 1;
            }
            bucketTaskMap.put(bucketId, numEstimatedTasks);
        }

        return bucketTaskMap;
    }

    private static MapWork populateMapWork(JobConf jobConf, String inputName) {
        MapWork work = null;
        if (inputName != null) {
            work = (MapWork) Utilities.getMergeWork(jobConf, inputName);
            // work can still be null if there is no merge work for this input
        }
        if (work == null) {
            work = Utilities.getMapWork(jobConf);
        }

        return work;
    }

    private boolean schemaEvolved(InputSplit s, InputSplit prevSplit, boolean groupAcrossFiles, MapWork work)
            throws IOException {
        boolean retval = false;
        Path path = ((FileSplit) s).getPath();
        PartitionDesc pd = HiveFileFormatUtils.getPartitionDescFromPathRecursively(work.getPathToPartitionInfo(),
                path, cache);
        String currentDeserializerClass = pd.getDeserializerClassName();
        Class<?> currentInputFormatClass = pd.getInputFileFormatClass();

        Class<?> previousInputFormatClass = null;
        String previousDeserializerClass = null;
        if (prevSplit != null) {
            Path prevPath = ((FileSplit) prevSplit).getPath();
            if (!groupAcrossFiles) {
                return !path.equals(prevPath);
            }
            PartitionDesc prevPD = HiveFileFormatUtils
                    .getPartitionDescFromPathRecursively(work.getPathToPartitionInfo(), prevPath, cache);
            previousDeserializerClass = prevPD.getDeserializerClassName();
            previousInputFormatClass = prevPD.getInputFileFormatClass();
        }

        if ((currentInputFormatClass != previousInputFormatClass)
                || (!currentDeserializerClass.equals(previousDeserializerClass))) {
            retval = true;
        }

        if (LOG.isDebugEnabled()) {
            LOG.debug("Adding split " + path + " to src new group? " + retval);
        }
        return retval;
    }

}