org.apache.druid.benchmark.query.TimeseriesBenchmark.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.druid.benchmark.query.TimeseriesBenchmark.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package org.apache.druid.benchmark.query;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import com.google.common.io.Files;
import org.apache.commons.io.FileUtils;
import org.apache.druid.benchmark.datagen.BenchmarkDataGenerator;
import org.apache.druid.benchmark.datagen.BenchmarkSchemaInfo;
import org.apache.druid.benchmark.datagen.BenchmarkSchemas;
import org.apache.druid.data.input.InputRow;
import org.apache.druid.hll.HyperLogLogHash;
import org.apache.druid.jackson.DefaultObjectMapper;
import org.apache.druid.java.util.common.Intervals;
import org.apache.druid.java.util.common.concurrent.Execs;
import org.apache.druid.java.util.common.granularity.Granularities;
import org.apache.druid.java.util.common.guava.Sequence;
import org.apache.druid.java.util.common.logger.Logger;
import org.apache.druid.query.Druids;
import org.apache.druid.query.FinalizeResultsQueryRunner;
import org.apache.druid.query.Query;
import org.apache.druid.query.QueryPlus;
import org.apache.druid.query.QueryRunner;
import org.apache.druid.query.QueryRunnerFactory;
import org.apache.druid.query.QueryToolChest;
import org.apache.druid.query.Result;
import org.apache.druid.query.aggregation.AggregatorFactory;
import org.apache.druid.query.aggregation.DoubleMinAggregatorFactory;
import org.apache.druid.query.aggregation.DoubleSumAggregatorFactory;
import org.apache.druid.query.aggregation.FilteredAggregatorFactory;
import org.apache.druid.query.aggregation.LongMaxAggregatorFactory;
import org.apache.druid.query.aggregation.LongSumAggregatorFactory;
import org.apache.druid.query.aggregation.hyperloglog.HyperUniquesAggregatorFactory;
import org.apache.druid.query.aggregation.hyperloglog.HyperUniquesSerde;
import org.apache.druid.query.filter.BoundDimFilter;
import org.apache.druid.query.filter.DimFilter;
import org.apache.druid.query.filter.SelectorDimFilter;
import org.apache.druid.query.ordering.StringComparators;
import org.apache.druid.query.spec.MultipleIntervalSegmentSpec;
import org.apache.druid.query.spec.QuerySegmentSpec;
import org.apache.druid.query.timeseries.TimeseriesQuery;
import org.apache.druid.query.timeseries.TimeseriesQueryEngine;
import org.apache.druid.query.timeseries.TimeseriesQueryQueryToolChest;
import org.apache.druid.query.timeseries.TimeseriesQueryRunnerFactory;
import org.apache.druid.query.timeseries.TimeseriesResultValue;
import org.apache.druid.segment.IncrementalIndexSegment;
import org.apache.druid.segment.IndexIO;
import org.apache.druid.segment.IndexMergerV9;
import org.apache.druid.segment.IndexSpec;
import org.apache.druid.segment.QueryableIndex;
import org.apache.druid.segment.QueryableIndexSegment;
import org.apache.druid.segment.column.ColumnConfig;
import org.apache.druid.segment.column.ColumnHolder;
import org.apache.druid.segment.incremental.IncrementalIndex;
import org.apache.druid.segment.serde.ComplexMetrics;
import org.apache.druid.segment.writeout.OffHeapMemorySegmentWriteOutMediumFactory;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Param;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.TearDown;
import org.openjdk.jmh.annotations.Warmup;
import org.openjdk.jmh.infra.Blackhole;

import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.TimeUnit;

@State(Scope.Benchmark)
@Fork(value = 1)
@Warmup(iterations = 10)
@Measurement(iterations = 25)
public class TimeseriesBenchmark {
    @Param({ "1" })
    private int numSegments;

    @Param({ "750000" })
    private int rowsPerSegment;

    @Param({ "basic.A", "basic.timeFilterNumeric", "basic.timeFilterAlphanumeric", "basic.timeFilterByInterval" })
    private String schemaAndQuery;

    private static final Logger log = new Logger(TimeseriesBenchmark.class);
    private static final int RNG_SEED = 9999;
    private static final IndexMergerV9 INDEX_MERGER_V9;
    private static final IndexIO INDEX_IO;
    public static final ObjectMapper JSON_MAPPER;

    private List<IncrementalIndex> incIndexes;
    private List<QueryableIndex> qIndexes;
    private File tmpDir;

    private QueryRunnerFactory factory;
    private BenchmarkSchemaInfo schemaInfo;
    private TimeseriesQuery query;

    private ExecutorService executorService;

    static {
        JSON_MAPPER = new DefaultObjectMapper();
        INDEX_IO = new IndexIO(JSON_MAPPER, new ColumnConfig() {
            @Override
            public int columnCacheSizeBytes() {
                return 0;
            }
        });
        INDEX_MERGER_V9 = new IndexMergerV9(JSON_MAPPER, INDEX_IO,
                OffHeapMemorySegmentWriteOutMediumFactory.instance());
    }

    private static final Map<String, Map<String, TimeseriesQuery>> SCHEMA_QUERY_MAP = new LinkedHashMap<>();

    private void setupQueries() {
        // queries for the basic schema
        Map<String, TimeseriesQuery> basicQueries = new LinkedHashMap<>();
        BenchmarkSchemaInfo basicSchema = BenchmarkSchemas.SCHEMA_MAP.get("basic");

        { // basic.A
            QuerySegmentSpec intervalSpec = new MultipleIntervalSegmentSpec(
                    Collections.singletonList(basicSchema.getDataInterval()));

            List<AggregatorFactory> queryAggs = new ArrayList<>();
            queryAggs.add(new LongSumAggregatorFactory("sumLongSequential", "sumLongSequential"));
            queryAggs.add(new LongMaxAggregatorFactory("maxLongUniform", "maxLongUniform"));
            queryAggs.add(new DoubleSumAggregatorFactory("sumFloatNormal", "sumFloatNormal"));
            queryAggs.add(new DoubleMinAggregatorFactory("minFloatZipf", "minFloatZipf"));
            queryAggs.add(new HyperUniquesAggregatorFactory("hyperUniquesMet", "hyper"));

            TimeseriesQuery queryA = Druids.newTimeseriesQueryBuilder().dataSource("blah")
                    .granularity(Granularities.ALL).intervals(intervalSpec).aggregators(queryAggs).descending(false)
                    .build();

            basicQueries.put("A", queryA);
        }
        {
            QuerySegmentSpec intervalSpec = new MultipleIntervalSegmentSpec(
                    Collections.singletonList(basicSchema.getDataInterval()));

            List<AggregatorFactory> queryAggs = new ArrayList<>();
            LongSumAggregatorFactory lsaf = new LongSumAggregatorFactory("sumLongSequential", "sumLongSequential");
            BoundDimFilter timeFilter = new BoundDimFilter(ColumnHolder.TIME_COLUMN_NAME, "200000", "300000", false,
                    false, null, null, StringComparators.NUMERIC);
            queryAggs.add(new FilteredAggregatorFactory(lsaf, timeFilter));

            TimeseriesQuery timeFilterQuery = Druids.newTimeseriesQueryBuilder().dataSource("blah")
                    .granularity(Granularities.ALL).intervals(intervalSpec).aggregators(queryAggs).descending(false)
                    .build();

            basicQueries.put("timeFilterNumeric", timeFilterQuery);
        }
        {
            QuerySegmentSpec intervalSpec = new MultipleIntervalSegmentSpec(
                    Collections.singletonList(basicSchema.getDataInterval()));

            List<AggregatorFactory> queryAggs = new ArrayList<>();
            LongSumAggregatorFactory lsaf = new LongSumAggregatorFactory("sumLongSequential", "sumLongSequential");
            BoundDimFilter timeFilter = new BoundDimFilter(ColumnHolder.TIME_COLUMN_NAME, "200000", "300000", false,
                    false, null, null, StringComparators.ALPHANUMERIC);
            queryAggs.add(new FilteredAggregatorFactory(lsaf, timeFilter));

            TimeseriesQuery timeFilterQuery = Druids.newTimeseriesQueryBuilder().dataSource("blah")
                    .granularity(Granularities.ALL).intervals(intervalSpec).aggregators(queryAggs).descending(false)
                    .build();

            basicQueries.put("timeFilterAlphanumeric", timeFilterQuery);
        }
        {
            QuerySegmentSpec intervalSpec = new MultipleIntervalSegmentSpec(
                    Collections.singletonList(Intervals.utc(200000, 300000)));
            List<AggregatorFactory> queryAggs = new ArrayList<>();
            LongSumAggregatorFactory lsaf = new LongSumAggregatorFactory("sumLongSequential", "sumLongSequential");
            queryAggs.add(lsaf);

            TimeseriesQuery timeFilterQuery = Druids.newTimeseriesQueryBuilder().dataSource("blah")
                    .granularity(Granularities.ALL).intervals(intervalSpec).aggregators(queryAggs).descending(false)
                    .build();

            basicQueries.put("timeFilterByInterval", timeFilterQuery);
        }

        SCHEMA_QUERY_MAP.put("basic", basicQueries);
    }

    @Setup
    public void setup() throws IOException {
        log.info("SETUP CALLED AT " + System.currentTimeMillis());

        if (ComplexMetrics.getSerdeForType("hyperUnique") == null) {
            ComplexMetrics.registerSerde("hyperUnique", new HyperUniquesSerde(HyperLogLogHash.getDefault()));
        }

        executorService = Execs.multiThreaded(numSegments, "TimeseriesThreadPool");

        setupQueries();

        String[] schemaQuery = schemaAndQuery.split("\\.");
        String schemaName = schemaQuery[0];
        String queryName = schemaQuery[1];

        schemaInfo = BenchmarkSchemas.SCHEMA_MAP.get(schemaName);
        query = SCHEMA_QUERY_MAP.get(schemaName).get(queryName);

        incIndexes = new ArrayList<>();
        for (int i = 0; i < numSegments; i++) {
            log.info("Generating rows for segment " + i);
            BenchmarkDataGenerator gen = new BenchmarkDataGenerator(schemaInfo.getColumnSchemas(), RNG_SEED + i,
                    schemaInfo.getDataInterval(), rowsPerSegment);

            IncrementalIndex incIndex = makeIncIndex();

            for (int j = 0; j < rowsPerSegment; j++) {
                InputRow row = gen.nextRow();
                if (j % 10000 == 0) {
                    log.info(j + " rows generated.");
                }
                incIndex.add(row);
            }
            log.info(rowsPerSegment + " rows generated");
            incIndexes.add(incIndex);
        }

        tmpDir = Files.createTempDir();
        log.info("Using temp dir: " + tmpDir.getAbsolutePath());

        qIndexes = new ArrayList<>();
        for (int i = 0; i < numSegments; i++) {
            File indexFile = INDEX_MERGER_V9.persist(incIndexes.get(i), tmpDir, new IndexSpec(), null);

            QueryableIndex qIndex = INDEX_IO.loadIndex(indexFile);
            qIndexes.add(qIndex);
        }

        factory = new TimeseriesQueryRunnerFactory(
                new TimeseriesQueryQueryToolChest(QueryBenchmarkUtil.NoopIntervalChunkingQueryRunnerDecorator()),
                new TimeseriesQueryEngine(), QueryBenchmarkUtil.NOOP_QUERYWATCHER);
    }

    @TearDown
    public void tearDown() throws IOException {
        FileUtils.deleteDirectory(tmpDir);
    }

    private IncrementalIndex makeIncIndex() {
        return new IncrementalIndex.Builder().setSimpleTestingIndexSchema(schemaInfo.getAggsArray())
                .setReportParseExceptions(false).setMaxRowCount(rowsPerSegment).buildOnheap();
    }

    private static <T> List<T> runQuery(QueryRunnerFactory factory, QueryRunner runner, Query<T> query) {
        QueryToolChest toolChest = factory.getToolchest();
        QueryRunner<T> theRunner = new FinalizeResultsQueryRunner<>(
                toolChest.mergeResults(toolChest.preMergeQueryDecoration(runner)), toolChest);

        Sequence<T> queryResult = theRunner.run(QueryPlus.wrap(query), Maps.newHashMap());
        return queryResult.toList();
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @OutputTimeUnit(TimeUnit.MICROSECONDS)
    public void querySingleIncrementalIndex(Blackhole blackhole) {
        QueryRunner<Result<TimeseriesResultValue>> runner = QueryBenchmarkUtil.makeQueryRunner(factory, "incIndex",
                new IncrementalIndexSegment(incIndexes.get(0), "incIndex"));

        List<Result<TimeseriesResultValue>> results = TimeseriesBenchmark.runQuery(factory, runner, query);
        for (Result<TimeseriesResultValue> result : results) {
            blackhole.consume(result);
        }
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @OutputTimeUnit(TimeUnit.MICROSECONDS)
    public void querySingleQueryableIndex(Blackhole blackhole) {
        final QueryRunner<Result<TimeseriesResultValue>> runner = QueryBenchmarkUtil.makeQueryRunner(factory,
                "qIndex", new QueryableIndexSegment("qIndex", qIndexes.get(0)));

        List<Result<TimeseriesResultValue>> results = TimeseriesBenchmark.runQuery(factory, runner, query);
        for (Result<TimeseriesResultValue> result : results) {
            blackhole.consume(result);
        }
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @OutputTimeUnit(TimeUnit.MICROSECONDS)
    public void queryFilteredSingleQueryableIndex(Blackhole blackhole) {
        final QueryRunner<Result<TimeseriesResultValue>> runner = QueryBenchmarkUtil.makeQueryRunner(factory,
                "qIndex", new QueryableIndexSegment("qIndex", qIndexes.get(0)));

        DimFilter filter = new SelectorDimFilter("dimSequential", "399", null);
        Query filteredQuery = query.withDimFilter(filter);

        List<Result<TimeseriesResultValue>> results = TimeseriesBenchmark.runQuery(factory, runner, filteredQuery);
        for (Result<TimeseriesResultValue> result : results) {
            blackhole.consume(result);
        }
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @OutputTimeUnit(TimeUnit.MICROSECONDS)
    public void queryMultiQueryableIndex(Blackhole blackhole) {
        List<QueryRunner<Result<TimeseriesResultValue>>> singleSegmentRunners = Lists.newArrayList();
        QueryToolChest toolChest = factory.getToolchest();
        for (int i = 0; i < numSegments; i++) {
            String segmentName = "qIndex" + i;
            QueryRunner<Result<TimeseriesResultValue>> runner = QueryBenchmarkUtil.makeQueryRunner(factory,
                    segmentName, new QueryableIndexSegment(segmentName, qIndexes.get(i)));
            singleSegmentRunners.add(toolChest.preMergeQueryDecoration(runner));
        }

        QueryRunner theRunner = toolChest.postMergeQueryDecoration(new FinalizeResultsQueryRunner<>(
                toolChest.mergeResults(factory.mergeRunners(executorService, singleSegmentRunners)), toolChest));

        Sequence<Result<TimeseriesResultValue>> queryResult = theRunner.run(QueryPlus.wrap(query),
                Maps.newHashMap());
        List<Result<TimeseriesResultValue>> results = queryResult.toList();

        for (Result<TimeseriesResultValue> result : results) {
            blackhole.consume(result);
        }
    }
}