Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.stat.interval; import org.apache.commons.math3.distribution.NormalDistribution; import org.apache.commons.math3.util.FastMath; /** * Implements the Wilson score method for creating a binomial proportion confidence interval. * * @see <a * href="http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Wilson_score_interval"> * Wilson score interval (Wikipedia)</a> * @since 3.3 */ public class WilsonScoreInterval implements BinomialConfidenceInterval { /** {@inheritDoc} */ public ConfidenceInterval createInterval(int numberOfTrials, int numberOfSuccesses, double confidenceLevel) { IntervalUtils.checkParameters(numberOfTrials, numberOfSuccesses, confidenceLevel); final double alpha = (1.0 - confidenceLevel) / 2; final NormalDistribution normalDistribution = new NormalDistribution(); final double z = normalDistribution.inverseCumulativeProbability(1 - alpha); final double zSquared = FastMath.pow(z, 2); final double mean = (double) numberOfSuccesses / (double) numberOfTrials; final double factor = 1.0 / (1 + (1.0 / numberOfTrials) * zSquared); final double modifiedSuccessRatio = mean + (1.0 / (2 * numberOfTrials)) * zSquared; final double difference = z * FastMath.sqrt(1.0 / numberOfTrials * mean * (1 - mean) + (1.0 / (4 * FastMath.pow(numberOfTrials, 2)) * zSquared)); final double lowerBound = factor * (modifiedSuccessRatio - difference); final double upperBound = factor * (modifiedSuccessRatio + difference); return new ConfidenceInterval(lowerBound, upperBound, confidenceLevel); } }