Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.special; import org.apache.commons.math3.util.FastMath; /** * This is a utility class that provides computation methods related to the * error functions. * * @version $Id: Erf.java 1416643 2012-12-03 19:37:14Z tn $ */ public class Erf { /** * The number {@code X_CRIT} is used by {@link #erf(double, double)} internally. * This number solves {@code erf(x)=0.5} within 1ulp. * More precisely, the current implementations of * {@link #erf(double)} and {@link #erfc(double)} satisfy:<br/> * {@code erf(X_CRIT) < 0.5},<br/> * {@code erf(Math.nextUp(X_CRIT) > 0.5},<br/> * {@code erfc(X_CRIT) = 0.5}, and<br/> * {@code erfc(Math.nextUp(X_CRIT) < 0.5} */ private static final double X_CRIT = 0.4769362762044697; /** * Default constructor. Prohibit instantiation. */ private Erf() { } /** * Returns the error function. * * <p>erf(x) = 2/√π <sub>0</sub>∫<sup>x</sup> e<sup>-t<sup>2</sup></sup>dt </p> * * <p>This implementation computes erf(x) using the * {@link Gamma#regularizedGammaP(double, double, double, int) regularized gamma function}, * following <a href="http://mathworld.wolfram.com/Erf.html"> Erf</a>, equation (3)</p> * * <p>The value returned is always between -1 and 1 (inclusive). * If {@code abs(x) > 40}, then {@code erf(x)} is indistinguishable from * either 1 or -1 as a double, so the appropriate extreme value is returned. * </p> * * @param x the value. * @return the error function erf(x) * @throws org.apache.commons.math3.exception.MaxCountExceededException * if the algorithm fails to converge. * @see Gamma#regularizedGammaP(double, double, double, int) */ public static double erf(double x) { if (FastMath.abs(x) > 40) { return x > 0 ? 1 : -1; } final double ret = Gamma.regularizedGammaP(0.5, x * x, 1.0e-15, 10000); return x < 0 ? -ret : ret; } /** * Returns the complementary error function. * * <p>erfc(x) = 2/√π <sub>x</sub>∫<sup>∞</sup> e<sup>-t<sup>2</sup></sup>dt * <br/> * = 1 - {@link #erf(double) erf(x)} </p> * * <p>This implementation computes erfc(x) using the * {@link Gamma#regularizedGammaQ(double, double, double, int) regularized gamma function}, * following <a href="http://mathworld.wolfram.com/Erf.html"> Erf</a>, equation (3).</p> * * <p>The value returned is always between 0 and 2 (inclusive). * If {@code abs(x) > 40}, then {@code erf(x)} is indistinguishable from * either 0 or 2 as a double, so the appropriate extreme value is returned. * </p> * * @param x the value * @return the complementary error function erfc(x) * @throws org.apache.commons.math3.exception.MaxCountExceededException * if the algorithm fails to converge. * @see Gamma#regularizedGammaQ(double, double, double, int) * @since 2.2 */ public static double erfc(double x) { if (FastMath.abs(x) > 40) { return x > 0 ? 0 : 2; } final double ret = Gamma.regularizedGammaQ(0.5, x * x, 1.0e-15, 10000); return x < 0 ? 2 - ret : ret; } /** * Returns the difference between erf(x1) and erf(x2). * * The implementation uses either erf(double) or erfc(double) * depending on which provides the most precise result. * * @param x1 the first value * @param x2 the second value * @return erf(x2) - erf(x1) */ public static double erf(double x1, double x2) { if (x1 > x2) { return -erf(x2, x1); } return x1 < -X_CRIT ? x2 < 0.0 ? erfc(-x2) - erfc(-x1) : erf(x2) - erf(x1) : x2 > X_CRIT && x1 > 0.0 ? erfc(x1) - erfc(x2) : erf(x2) - erf(x1); } }