org.apache.commons.math3.ode.nonstiff.AdaptiveStepsizeIntegrator.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.commons.math3.ode.nonstiff.AdaptiveStepsizeIntegrator.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.ode.AbstractIntegrator;
import org.apache.commons.math3.ode.ExpandableStatefulODE;
import org.apache.commons.math3.util.FastMath;

/**
 * This abstract class holds the common part of all adaptive
 * stepsize integrators for Ordinary Differential Equations.
 *
 * <p>These algorithms perform integration with stepsize control, which
 * means the user does not specify the integration step but rather a
 * tolerance on error. The error threshold is computed as
 * <pre>
 * threshold_i = absTol_i + relTol_i * max (abs (ym), abs (ym+1))
 * </pre>
 * where absTol_i is the absolute tolerance for component i of the
 * state vector and relTol_i is the relative tolerance for the same
 * component. The user can also use only two scalar values absTol and
 * relTol which will be used for all components.
 * </p>
 * <p>
 * If the Ordinary Differential Equations is an {@link ExpandableStatefulODE
 * extended ODE} rather than a {@link
 * org.apache.commons.math3.ode.FirstOrderDifferentialEquations basic ODE}, then
 * <em>only</em> the {@link ExpandableStatefulODE#getPrimaryState() primary part}
 * of the state vector is used for stepsize control, not the complete state vector.
 * </p>
 *
 * <p>If the estimated error for ym+1 is such that
 * <pre>
 * sqrt((sum (errEst_i / threshold_i)^2 ) / n) < 1
 * </pre>
 *
 * (where n is the main set dimension) then the step is accepted,
 * otherwise the step is rejected and a new attempt is made with a new
 * stepsize.</p>
 *
 * @version $Id: AdaptiveStepsizeIntegrator.java 1416643 2012-12-03 19:37:14Z tn $
 * @since 1.2
 *
 */

public abstract class AdaptiveStepsizeIntegrator extends AbstractIntegrator {

    /** Allowed absolute scalar error. */
    protected double scalAbsoluteTolerance;

    /** Allowed relative scalar error. */
    protected double scalRelativeTolerance;

    /** Allowed absolute vectorial error. */
    protected double[] vecAbsoluteTolerance;

    /** Allowed relative vectorial error. */
    protected double[] vecRelativeTolerance;

    /** Main set dimension. */
    protected int mainSetDimension;

    /** User supplied initial step. */
    private double initialStep;

    /** Minimal step. */
    private double minStep;

    /** Maximal step. */
    private double maxStep;

    /** Build an integrator with the given stepsize bounds.
     * The default step handler does nothing.
     * @param name name of the method
     * @param minStep minimal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param maxStep maximal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param scalAbsoluteTolerance allowed absolute error
     * @param scalRelativeTolerance allowed relative error
     */
    public AdaptiveStepsizeIntegrator(final String name, final double minStep, final double maxStep,
            final double scalAbsoluteTolerance, final double scalRelativeTolerance) {

        super(name);
        setStepSizeControl(minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
        resetInternalState();

    }

    /** Build an integrator with the given stepsize bounds.
     * The default step handler does nothing.
     * @param name name of the method
     * @param minStep minimal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param maxStep maximal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param vecAbsoluteTolerance allowed absolute error
     * @param vecRelativeTolerance allowed relative error
     */
    public AdaptiveStepsizeIntegrator(final String name, final double minStep, final double maxStep,
            final double[] vecAbsoluteTolerance, final double[] vecRelativeTolerance) {

        super(name);
        setStepSizeControl(minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
        resetInternalState();

    }

    /** Set the adaptive step size control parameters.
     * <p>
     * A side effect of this method is to also reset the initial
     * step so it will be automatically computed by the integrator
     * if {@link #setInitialStepSize(double) setInitialStepSize}
     * is not called by the user.
     * </p>
     * @param minimalStep minimal step (must be positive even for backward
     * integration), the last step can be smaller than this
     * @param maximalStep maximal step (must be positive even for backward
     * integration)
     * @param absoluteTolerance allowed absolute error
     * @param relativeTolerance allowed relative error
     */
    public void setStepSizeControl(final double minimalStep, final double maximalStep,
            final double absoluteTolerance, final double relativeTolerance) {

        minStep = FastMath.abs(minimalStep);
        maxStep = FastMath.abs(maximalStep);
        initialStep = -1;

        scalAbsoluteTolerance = absoluteTolerance;
        scalRelativeTolerance = relativeTolerance;
        vecAbsoluteTolerance = null;
        vecRelativeTolerance = null;

    }

    /** Set the adaptive step size control parameters.
     * <p>
     * A side effect of this method is to also reset the initial
     * step so it will be automatically computed by the integrator
     * if {@link #setInitialStepSize(double) setInitialStepSize}
     * is not called by the user.
     * </p>
     * @param minimalStep minimal step (must be positive even for backward
     * integration), the last step can be smaller than this
     * @param maximalStep maximal step (must be positive even for backward
     * integration)
     * @param absoluteTolerance allowed absolute error
     * @param relativeTolerance allowed relative error
     */
    public void setStepSizeControl(final double minimalStep, final double maximalStep,
            final double[] absoluteTolerance, final double[] relativeTolerance) {

        minStep = FastMath.abs(minimalStep);
        maxStep = FastMath.abs(maximalStep);
        initialStep = -1;

        scalAbsoluteTolerance = 0;
        scalRelativeTolerance = 0;
        vecAbsoluteTolerance = absoluteTolerance.clone();
        vecRelativeTolerance = relativeTolerance.clone();

    }

    /** Set the initial step size.
     * <p>This method allows the user to specify an initial positive
     * step size instead of letting the integrator guess it by
     * itself. If this method is not called before integration is
     * started, the initial step size will be estimated by the
     * integrator.</p>
     * @param initialStepSize initial step size to use (must be positive even
     * for backward integration ; providing a negative value or a value
     * outside of the min/max step interval will lead the integrator to
     * ignore the value and compute the initial step size by itself)
     */
    public void setInitialStepSize(final double initialStepSize) {
        if ((initialStepSize < minStep) || (initialStepSize > maxStep)) {
            initialStep = -1.0;
        } else {
            initialStep = initialStepSize;
        }
    }

    /** {@inheritDoc} */
    @Override
    protected void sanityChecks(final ExpandableStatefulODE equations, final double t)
            throws DimensionMismatchException, NumberIsTooSmallException {

        super.sanityChecks(equations, t);

        mainSetDimension = equations.getPrimaryMapper().getDimension();

        if ((vecAbsoluteTolerance != null) && (vecAbsoluteTolerance.length != mainSetDimension)) {
            throw new DimensionMismatchException(mainSetDimension, vecAbsoluteTolerance.length);
        }

        if ((vecRelativeTolerance != null) && (vecRelativeTolerance.length != mainSetDimension)) {
            throw new DimensionMismatchException(mainSetDimension, vecRelativeTolerance.length);
        }

    }

    /** Initialize the integration step.
     * @param forward forward integration indicator
     * @param order order of the method
     * @param scale scaling vector for the state vector (can be shorter than state vector)
     * @param t0 start time
     * @param y0 state vector at t0
     * @param yDot0 first time derivative of y0
     * @param y1 work array for a state vector
     * @param yDot1 work array for the first time derivative of y1
     * @return first integration step
     * @exception MaxCountExceededException if the number of functions evaluations is exceeded
     * @exception DimensionMismatchException if arrays dimensions do not match equations settings
     */
    public double initializeStep(final boolean forward, final int order, final double[] scale, final double t0,
            final double[] y0, final double[] yDot0, final double[] y1, final double[] yDot1)
            throws MaxCountExceededException, DimensionMismatchException {

        if (initialStep > 0) {
            // use the user provided value
            return forward ? initialStep : -initialStep;
        }

        // very rough first guess : h = 0.01 * ||y/scale|| / ||y'/scale||
        // this guess will be used to perform an Euler step
        double ratio;
        double yOnScale2 = 0;
        double yDotOnScale2 = 0;
        for (int j = 0; j < scale.length; ++j) {
            ratio = y0[j] / scale[j];
            yOnScale2 += ratio * ratio;
            ratio = yDot0[j] / scale[j];
            yDotOnScale2 += ratio * ratio;
        }

        double h = ((yOnScale2 < 1.0e-10) || (yDotOnScale2 < 1.0e-10)) ? 1.0e-6
                : (0.01 * FastMath.sqrt(yOnScale2 / yDotOnScale2));
        if (!forward) {
            h = -h;
        }

        // perform an Euler step using the preceding rough guess
        for (int j = 0; j < y0.length; ++j) {
            y1[j] = y0[j] + h * yDot0[j];
        }
        computeDerivatives(t0 + h, y1, yDot1);

        // estimate the second derivative of the solution
        double yDDotOnScale = 0;
        for (int j = 0; j < scale.length; ++j) {
            ratio = (yDot1[j] - yDot0[j]) / scale[j];
            yDDotOnScale += ratio * ratio;
        }
        yDDotOnScale = FastMath.sqrt(yDDotOnScale) / h;

        // step size is computed such that
        // h^order * max (||y'/tol||, ||y''/tol||) = 0.01
        final double maxInv2 = FastMath.max(FastMath.sqrt(yDotOnScale2), yDDotOnScale);
        final double h1 = (maxInv2 < 1.0e-15) ? FastMath.max(1.0e-6, 0.001 * FastMath.abs(h))
                : FastMath.pow(0.01 / maxInv2, 1.0 / order);
        h = FastMath.min(100.0 * FastMath.abs(h), h1);
        h = FastMath.max(h, 1.0e-12 * FastMath.abs(t0)); // avoids cancellation when computing t1 - t0
        if (h < getMinStep()) {
            h = getMinStep();
        }
        if (h > getMaxStep()) {
            h = getMaxStep();
        }
        if (!forward) {
            h = -h;
        }

        return h;

    }

    /** Filter the integration step.
     * @param h signed step
     * @param forward forward integration indicator
     * @param acceptSmall if true, steps smaller than the minimal value
     * are silently increased up to this value, if false such small
     * steps generate an exception
     * @return a bounded integration step (h if no bound is reach, or a bounded value)
     * @exception NumberIsTooSmallException if the step is too small and acceptSmall is false
     */
    protected double filterStep(final double h, final boolean forward, final boolean acceptSmall)
            throws NumberIsTooSmallException {

        double filteredH = h;
        if (FastMath.abs(h) < minStep) {
            if (acceptSmall) {
                filteredH = forward ? minStep : -minStep;
            } else {
                throw new NumberIsTooSmallException(LocalizedFormats.MINIMAL_STEPSIZE_REACHED_DURING_INTEGRATION,
                        FastMath.abs(h), minStep, true);
            }
        }

        if (filteredH > maxStep) {
            filteredH = maxStep;
        } else if (filteredH < -maxStep) {
            filteredH = -maxStep;
        }

        return filteredH;

    }

    /** {@inheritDoc} */
    @Override
    public abstract void integrate(ExpandableStatefulODE equations, double t) throws NumberIsTooSmallException,
            DimensionMismatchException, MaxCountExceededException, NoBracketingException;

    /** {@inheritDoc} */
    @Override
    public double getCurrentStepStart() {
        return stepStart;
    }

    /** Reset internal state to dummy values. */
    protected void resetInternalState() {
        stepStart = Double.NaN;
        stepSize = FastMath.sqrt(minStep * maxStep);
    }

    /** Get the minimal step.
     * @return minimal step
     */
    public double getMinStep() {
        return minStep;
    }

    /** Get the maximal step.
     * @return maximal step
     */
    public double getMaxStep() {
        return maxStep;
    }

}