Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.ml.clustering; import java.util.Collection; import java.util.List; import org.apache.commons.math3.exception.ConvergenceException; import org.apache.commons.math3.exception.MathIllegalArgumentException; import org.apache.commons.math3.ml.clustering.evaluation.ClusterEvaluator; import org.apache.commons.math3.ml.clustering.evaluation.SumOfClusterVariances; /** * A wrapper around a k-means++ clustering algorithm which performs multiple trials * and returns the best solution. * @param <T> type of the points to cluster * @since 3.2 */ public class MultiKMeansPlusPlusClusterer<T extends Clusterable> extends Clusterer<T> { /** The underlying k-means clusterer. */ private final KMeansPlusPlusClusterer<T> clusterer; /** The number of trial runs. */ private final int numTrials; /** The cluster evaluator to use. */ private final ClusterEvaluator<T> evaluator; /** Build a clusterer. * @param clusterer the k-means clusterer to use * @param numTrials number of trial runs */ public MultiKMeansPlusPlusClusterer(final KMeansPlusPlusClusterer<T> clusterer, final int numTrials) { this(clusterer, numTrials, new SumOfClusterVariances<T>(clusterer.getDistanceMeasure())); } /** Build a clusterer. * @param clusterer the k-means clusterer to use * @param numTrials number of trial runs * @param evaluator the cluster evaluator to use * @since 3.3 */ public MultiKMeansPlusPlusClusterer(final KMeansPlusPlusClusterer<T> clusterer, final int numTrials, final ClusterEvaluator<T> evaluator) { super(clusterer.getDistanceMeasure()); this.clusterer = clusterer; this.numTrials = numTrials; this.evaluator = evaluator; } /** * Returns the embedded k-means clusterer used by this instance. * @return the embedded clusterer */ public KMeansPlusPlusClusterer<T> getClusterer() { return clusterer; } /** * Returns the number of trials this instance will do. * @return the number of trials */ public int getNumTrials() { return numTrials; } /** * Returns the {@link ClusterEvaluator} used to determine the "best" clustering. * @return the used {@link ClusterEvaluator} * @since 3.3 */ public ClusterEvaluator<T> getClusterEvaluator() { return evaluator; } /** * Runs the K-means++ clustering algorithm. * * @param points the points to cluster * @return a list of clusters containing the points * @throws MathIllegalArgumentException if the data points are null or the number * of clusters is larger than the number of data points * @throws ConvergenceException if an empty cluster is encountered and the * underlying {@link KMeansPlusPlusClusterer} has its * {@link KMeansPlusPlusClusterer.EmptyClusterStrategy} is set to {@code ERROR}. */ @Override public List<CentroidCluster<T>> cluster(final Collection<T> points) throws MathIllegalArgumentException, ConvergenceException { // at first, we have not found any clusters list yet List<CentroidCluster<T>> best = null; double bestVarianceSum = Double.POSITIVE_INFINITY; // do several clustering trials for (int i = 0; i < numTrials; ++i) { // compute a clusters list List<CentroidCluster<T>> clusters = clusterer.cluster(points); // compute the variance of the current list final double varianceSum = evaluator.score(clusters); if (evaluator.isBetterScore(varianceSum, bestVarianceSum)) { // this one is the best we have found so far, remember it best = clusters; bestVarianceSum = varianceSum; } } // return the best clusters list found return best; } }