Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.geometry.partitioning; import org.apache.commons.math3.geometry.Space; /** Utility class checking if inside nodes can be found * on the plus and minus sides of an hyperplane. * @param <S> Type of the space. * @since 3.4 */ class InsideFinder<S extends Space> { /** Region on which to operate. */ private final Region<S> region; /** Indicator of inside leaf nodes found on the plus side. */ private boolean plusFound; /** Indicator of inside leaf nodes found on the plus side. */ private boolean minusFound; /** Simple constructor. * @param region region on which to operate */ public InsideFinder(final Region<S> region) { this.region = region; plusFound = false; minusFound = false; } /** Search recursively for inside leaf nodes on each side of the given hyperplane. * <p>The algorithm used here is directly derived from the one * described in section III (<i>Binary Partitioning of a BSP * Tree</i>) of the Bruce Naylor, John Amanatides and William * Thibault paper <a * href="http://www.cs.yorku.ca/~amana/research/bsptSetOp.pdf">Merging * BSP Trees Yields Polyhedral Set Operations</a> Proc. Siggraph * '90, Computer Graphics 24(4), August 1990, pp 115-124, published * by the Association for Computing Machinery (ACM)..</p> * @param node current BSP tree node * @param sub sub-hyperplane */ public void recurseSides(final BSPTree<S> node, final SubHyperplane<S> sub) { if (node.getCut() == null) { if ((Boolean) node.getAttribute()) { // this is an inside cell expanding across the hyperplane plusFound = true; minusFound = true; } return; } final Hyperplane<S> hyperplane = node.getCut().getHyperplane(); switch (sub.side(hyperplane)) { case PLUS: // the sub-hyperplane is entirely in the plus sub-tree if (node.getCut().side(sub.getHyperplane()) == Side.PLUS) { if (!region.isEmpty(node.getMinus())) { plusFound = true; } } else { if (!region.isEmpty(node.getMinus())) { minusFound = true; } } if (!(plusFound && minusFound)) { recurseSides(node.getPlus(), sub); } break; case MINUS: // the sub-hyperplane is entirely in the minus sub-tree if (node.getCut().side(sub.getHyperplane()) == Side.PLUS) { if (!region.isEmpty(node.getPlus())) { plusFound = true; } } else { if (!region.isEmpty(node.getPlus())) { minusFound = true; } } if (!(plusFound && minusFound)) { recurseSides(node.getMinus(), sub); } break; case BOTH: // the sub-hyperplane extends in both sub-trees final SubHyperplane.SplitSubHyperplane<S> split = sub.split(hyperplane); // explore first the plus sub-tree recurseSides(node.getPlus(), split.getPlus()); // if needed, explore the minus sub-tree if (!(plusFound && minusFound)) { recurseSides(node.getMinus(), split.getMinus()); } break; default: // the sub-hyperplane and the cut sub-hyperplane share the same hyperplane if (node.getCut().getHyperplane().sameOrientationAs(sub.getHyperplane())) { if ((node.getPlus().getCut() != null) || ((Boolean) node.getPlus().getAttribute())) { plusFound = true; } if ((node.getMinus().getCut() != null) || ((Boolean) node.getMinus().getAttribute())) { minusFound = true; } } else { if ((node.getPlus().getCut() != null) || ((Boolean) node.getPlus().getAttribute())) { minusFound = true; } if ((node.getMinus().getCut() != null) || ((Boolean) node.getMinus().getAttribute())) { plusFound = true; } } } } /** Check if inside leaf nodes have been found on the plus side. * @return true if inside leaf nodes have been found on the plus side */ public boolean plusFound() { return plusFound; } /** Check if inside leaf nodes have been found on the minus side. * @return true if inside leaf nodes have been found on the minus side */ public boolean minusFound() { return minusFound; } }