Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.analysis.solvers; import org.apache.commons.math3.util.FastMath; import org.apache.commons.math3.exception.TooManyEvaluationsException; /** * Implements the <a href="http://mathworld.wolfram.com/Bisection.html"> * bisection algorithm</a> for finding zeros of univariate real functions. * <p> * The function should be continuous but not necessarily smooth.</p> * * @version $Id: BisectionSolver.java 1391927 2012-09-30 00:03:30Z erans $ */ public class BisectionSolver extends AbstractUnivariateSolver { /** Default absolute accuracy. */ private static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6; /** * Construct a solver with default accuracy (1e-6). */ public BisectionSolver() { this(DEFAULT_ABSOLUTE_ACCURACY); } /** * Construct a solver. * * @param absoluteAccuracy Absolute accuracy. */ public BisectionSolver(double absoluteAccuracy) { super(absoluteAccuracy); } /** * Construct a solver. * * @param relativeAccuracy Relative accuracy. * @param absoluteAccuracy Absolute accuracy. */ public BisectionSolver(double relativeAccuracy, double absoluteAccuracy) { super(relativeAccuracy, absoluteAccuracy); } /** * {@inheritDoc} */ @Override protected double doSolve() throws TooManyEvaluationsException { double min = getMin(); double max = getMax(); verifyInterval(min, max); final double absoluteAccuracy = getAbsoluteAccuracy(); double m; double fm; double fmin; while (true) { m = UnivariateSolverUtils.midpoint(min, max); fmin = computeObjectiveValue(min); fm = computeObjectiveValue(m); if (fm * fmin > 0) { // max and m bracket the root. min = m; } else { // min and m bracket the root. max = m; } if (FastMath.abs(max - min) <= absoluteAccuracy) { m = UnivariateSolverUtils.midpoint(min, max); return m; } } } }