Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.analysis.interpolation; import org.apache.commons.math3.analysis.UnivariateFunction; import org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction; import org.apache.commons.math3.exception.DimensionMismatchException; import org.apache.commons.math3.exception.NoDataException; import org.apache.commons.math3.exception.NonMonotonicSequenceException; import org.apache.commons.math3.util.MathArrays; /** * Generates a bicubic interpolating function. * * @version $Id: BicubicSplineInterpolator.java 1385313 2012-09-16 16:35:23Z tn $ * @since 2.2 */ public class BicubicSplineInterpolator implements BivariateGridInterpolator { /** * {@inheritDoc} */ public BicubicSplineInterpolatingFunction interpolate(final double[] xval, final double[] yval, final double[][] fval) throws NoDataException, DimensionMismatchException, NonMonotonicSequenceException { if (xval.length == 0 || yval.length == 0 || fval.length == 0) { throw new NoDataException(); } if (xval.length != fval.length) { throw new DimensionMismatchException(xval.length, fval.length); } MathArrays.checkOrder(xval); MathArrays.checkOrder(yval); final int xLen = xval.length; final int yLen = yval.length; // Samples (first index is y-coordinate, i.e. subarray variable is x) // 0 <= i < xval.length // 0 <= j < yval.length // fX[j][i] = f(xval[i], yval[j]) final double[][] fX = new double[yLen][xLen]; for (int i = 0; i < xLen; i++) { if (fval[i].length != yLen) { throw new DimensionMismatchException(fval[i].length, yLen); } for (int j = 0; j < yLen; j++) { fX[j][i] = fval[i][j]; } } final SplineInterpolator spInterpolator = new SplineInterpolator(); // For each line y[j] (0 <= j < yLen), construct a 1D spline with // respect to variable x final PolynomialSplineFunction[] ySplineX = new PolynomialSplineFunction[yLen]; for (int j = 0; j < yLen; j++) { ySplineX[j] = spInterpolator.interpolate(xval, fX[j]); } // For each line x[i] (0 <= i < xLen), construct a 1D spline with // respect to variable y generated by array fY_1[i] final PolynomialSplineFunction[] xSplineY = new PolynomialSplineFunction[xLen]; for (int i = 0; i < xLen; i++) { xSplineY[i] = spInterpolator.interpolate(yval, fval[i]); } // Partial derivatives with respect to x at the grid knots final double[][] dFdX = new double[xLen][yLen]; for (int j = 0; j < yLen; j++) { final UnivariateFunction f = ySplineX[j].derivative(); for (int i = 0; i < xLen; i++) { dFdX[i][j] = f.value(xval[i]); } } // Partial derivatives with respect to y at the grid knots final double[][] dFdY = new double[xLen][yLen]; for (int i = 0; i < xLen; i++) { final UnivariateFunction f = xSplineY[i].derivative(); for (int j = 0; j < yLen; j++) { dFdY[i][j] = f.value(yval[j]); } } // Cross partial derivatives final double[][] d2FdXdY = new double[xLen][yLen]; for (int i = 0; i < xLen; i++) { final int nI = nextIndex(i, xLen); final int pI = previousIndex(i); for (int j = 0; j < yLen; j++) { final int nJ = nextIndex(j, yLen); final int pJ = previousIndex(j); d2FdXdY[i][j] = (fval[nI][nJ] - fval[nI][pJ] - fval[pI][nJ] + fval[pI][pJ]) / ((xval[nI] - xval[pI]) * (yval[nJ] - yval[pJ])); } } // Create the interpolating splines return new BicubicSplineInterpolatingFunction(xval, yval, fval, dFdX, dFdY, d2FdXdY); } /** * Computes the next index of an array, clipping if necessary. * It is assumed (but not checked) that {@code i >= 0}. * * @param i Index. * @param max Upper limit of the array. * @return the next index. */ private int nextIndex(int i, int max) { final int index = i + 1; return index < max ? index : index - 1; } /** * Computes the previous index of an array, clipping if necessary. * It is assumed (but not checked) that {@code i} is smaller than the size * of the array. * * @param i Index. * @return the previous index. */ private int previousIndex(int i) { final int index = i - 1; return index >= 0 ? index : 0; } }