org.apache.commons.math.transform.FastFourierTransformer.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.commons.math.transform.FastFourierTransformer.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.transform;

import java.io.Serializable;
import java.lang.reflect.Array;

import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.complex.Complex;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;

/**
 * Implements the <a href="http://mathworld.wolfram.com/FastFourierTransform.html">
 * Fast Fourier Transform</a> for transformation of one-dimensional data sets.
 * For reference, see <b>Applied Numerical Linear Algebra</b>, ISBN 0898713897,
 * chapter 6.
 * <p>
 * There are several conventions for the definition of FFT and inverse FFT,
 * mainly on different coefficient and exponent. Here the equations are listed
 * in the comments of the corresponding methods.</p>
 * <p>
 * We require the length of data set to be power of 2, this greatly simplifies
 * and speeds up the code. Users can pad the data with zeros to meet this
 * requirement. There are other flavors of FFT, for reference, see S. Winograd,
 * <i>On computing the discrete Fourier transform</i>, Mathematics of Computation,
 * 32 (1978), 175 - 199.</p>
 *
 * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 fvr. 2011) $
 * @since 1.2
 */
public class FastFourierTransformer implements Serializable {

    /** Serializable version identifier. */
    static final long serialVersionUID = 5138259215438106000L;

    /** roots of unity */
    private RootsOfUnity roots = new RootsOfUnity();

    /**
     * Construct a default transformer.
     */
    public FastFourierTransformer() {
        super();
    }

    /**
     * Transform the given real data set.
     * <p>
     * The formula is $ y_n = \Sigma_{k=0}^{N-1} e^{-2 \pi i nk/N} x_k $
     * </p>
     *
     * @param f the real data array to be transformed
     * @return the complex transformed array
     * @throws IllegalArgumentException if any parameters are invalid
     */
    public Complex[] transform(double f[]) throws IllegalArgumentException {
        return fft(f, false);
    }

    /**
     * Transform the given real function, sampled on the given interval.
     * <p>
     * The formula is $ y_n = \Sigma_{k=0}^{N-1} e^{-2 \pi i nk/N} x_k $
     * </p>
     *
     * @param f the function to be sampled and transformed
     * @param min the lower bound for the interval
     * @param max the upper bound for the interval
     * @param n the number of sample points
     * @return the complex transformed array
     * @throws FunctionEvaluationException if function cannot be evaluated
     * at some point
     * @throws IllegalArgumentException if any parameters are invalid
     */
    public Complex[] transform(UnivariateRealFunction f, double min, double max, int n)
            throws FunctionEvaluationException, IllegalArgumentException {
        double data[] = sample(f, min, max, n);
        return fft(data, false);
    }

    /**
     * Transform the given complex data set.
     * <p>
     * The formula is $ y_n = \Sigma_{k=0}^{N-1} e^{-2 \pi i nk/N} x_k $
     * </p>
     *
     * @param f the complex data array to be transformed
     * @return the complex transformed array
     * @throws IllegalArgumentException if any parameters are invalid
     */
    public Complex[] transform(Complex f[]) throws IllegalArgumentException {
        roots.computeOmega(f.length);
        return fft(f);
    }

    /**
     * Transform the given real data set.
     * <p>
     * The formula is $y_n = (1/\sqrt{N}) \Sigma_{k=0}^{N-1} e^{-2 \pi i nk/N} x_k$
     * </p>
     *
     * @param f the real data array to be transformed
     * @return the complex transformed array
     * @throws IllegalArgumentException if any parameters are invalid
     */
    public Complex[] transform2(double f[]) throws IllegalArgumentException {

        double scaling_coefficient = 1.0 / FastMath.sqrt(f.length);
        return scaleArray(fft(f, false), scaling_coefficient);
    }

    /**
     * Transform the given real function, sampled on the given interval.
     * <p>
     * The formula is $y_n = (1/\sqrt{N}) \Sigma_{k=0}^{N-1} e^{-2 \pi i nk/N} x_k$
     * </p>
     *
     * @param f the function to be sampled and transformed
     * @param min the lower bound for the interval
     * @param max the upper bound for the interval
     * @param n the number of sample points
     * @return the complex transformed array
     * @throws FunctionEvaluationException if function cannot be evaluated
     * at some point
     * @throws IllegalArgumentException if any parameters are invalid
     */
    public Complex[] transform2(UnivariateRealFunction f, double min, double max, int n)
            throws FunctionEvaluationException, IllegalArgumentException {

        double data[] = sample(f, min, max, n);
        double scaling_coefficient = 1.0 / FastMath.sqrt(n);
        return scaleArray(fft(data, false), scaling_coefficient);
    }

    /**
     * Transform the given complex data set.
     * <p>
     * The formula is $y_n = (1/\sqrt{N}) \Sigma_{k=0}^{N-1} e^{-2 \pi i nk/N} x_k$
     * </p>
     *
     * @param f the complex data array to be transformed
     * @return the complex transformed array
     * @throws IllegalArgumentException if any parameters are invalid
     */
    public Complex[] transform2(Complex f[]) throws IllegalArgumentException {

        roots.computeOmega(f.length);
        double scaling_coefficient = 1.0 / FastMath.sqrt(f.length);
        return scaleArray(fft(f), scaling_coefficient);
    }

    /**
     * Inversely transform the given real data set.
     * <p>
     * The formula is $ x_k = (1/N) \Sigma_{n=0}^{N-1} e^{2 \pi i nk/N} y_n $
     * </p>
     *
     * @param f the real data array to be inversely transformed
     * @return the complex inversely transformed array
     * @throws IllegalArgumentException if any parameters are invalid
     */
    public Complex[] inversetransform(double f[]) throws IllegalArgumentException {

        double scaling_coefficient = 1.0 / f.length;
        return scaleArray(fft(f, true), scaling_coefficient);
    }

    /**
     * Inversely transform the given real function, sampled on the given interval.
     * <p>
     * The formula is $ x_k = (1/N) \Sigma_{n=0}^{N-1} e^{2 \pi i nk/N} y_n $
     * </p>
     *
     * @param f the function to be sampled and inversely transformed
     * @param min the lower bound for the interval
     * @param max the upper bound for the interval
     * @param n the number of sample points
     * @return the complex inversely transformed array
     * @throws FunctionEvaluationException if function cannot be evaluated
     * at some point
     * @throws IllegalArgumentException if any parameters are invalid
     */
    public Complex[] inversetransform(UnivariateRealFunction f, double min, double max, int n)
            throws FunctionEvaluationException, IllegalArgumentException {

        double data[] = sample(f, min, max, n);
        double scaling_coefficient = 1.0 / n;
        return scaleArray(fft(data, true), scaling_coefficient);
    }

    /**
     * Inversely transform the given complex data set.
     * <p>
     * The formula is $ x_k = (1/N) \Sigma_{n=0}^{N-1} e^{2 \pi i nk/N} y_n $
     * </p>
     *
     * @param f the complex data array to be inversely transformed
     * @return the complex inversely transformed array
     * @throws IllegalArgumentException if any parameters are invalid
     */
    public Complex[] inversetransform(Complex f[]) throws IllegalArgumentException {

        roots.computeOmega(-f.length); // pass negative argument
        double scaling_coefficient = 1.0 / f.length;
        return scaleArray(fft(f), scaling_coefficient);
    }

    /**
     * Inversely transform the given real data set.
     * <p>
     * The formula is $x_k = (1/\sqrt{N}) \Sigma_{n=0}^{N-1} e^{2 \pi i nk/N} y_n$
     * </p>
     *
     * @param f the real data array to be inversely transformed
     * @return the complex inversely transformed array
     * @throws IllegalArgumentException if any parameters are invalid
     */
    public Complex[] inversetransform2(double f[]) throws IllegalArgumentException {

        double scaling_coefficient = 1.0 / FastMath.sqrt(f.length);
        return scaleArray(fft(f, true), scaling_coefficient);
    }

    /**
     * Inversely transform the given real function, sampled on the given interval.
     * <p>
     * The formula is $x_k = (1/\sqrt{N}) \Sigma_{n=0}^{N-1} e^{2 \pi i nk/N} y_n$
     * </p>
     *
     * @param f the function to be sampled and inversely transformed
     * @param min the lower bound for the interval
     * @param max the upper bound for the interval
     * @param n the number of sample points
     * @return the complex inversely transformed array
     * @throws FunctionEvaluationException if function cannot be evaluated
     * at some point
     * @throws IllegalArgumentException if any parameters are invalid
     */
    public Complex[] inversetransform2(UnivariateRealFunction f, double min, double max, int n)
            throws FunctionEvaluationException, IllegalArgumentException {

        double data[] = sample(f, min, max, n);
        double scaling_coefficient = 1.0 / FastMath.sqrt(n);
        return scaleArray(fft(data, true), scaling_coefficient);
    }

    /**
     * Inversely transform the given complex data set.
     * <p>
     * The formula is $x_k = (1/\sqrt{N}) \Sigma_{n=0}^{N-1} e^{2 \pi i nk/N} y_n$
     * </p>
     *
     * @param f the complex data array to be inversely transformed
     * @return the complex inversely transformed array
     * @throws IllegalArgumentException if any parameters are invalid
     */
    public Complex[] inversetransform2(Complex f[]) throws IllegalArgumentException {

        roots.computeOmega(-f.length); // pass negative argument
        double scaling_coefficient = 1.0 / FastMath.sqrt(f.length);
        return scaleArray(fft(f), scaling_coefficient);
    }

    /**
     * Perform the base-4 Cooley-Tukey FFT algorithm (including inverse).
     *
     * @param f the real data array to be transformed
     * @param isInverse the indicator of forward or inverse transform
     * @return the complex transformed array
     * @throws IllegalArgumentException if any parameters are invalid
     */
    protected Complex[] fft(double f[], boolean isInverse) throws IllegalArgumentException {

        verifyDataSet(f);
        Complex F[] = new Complex[f.length];
        if (f.length == 1) {
            F[0] = new Complex(f[0], 0.0);
            return F;
        }

        // Rather than the naive real to complex conversion, pack 2N
        // real numbers into N complex numbers for better performance.
        int N = f.length >> 1;
        Complex c[] = new Complex[N];
        for (int i = 0; i < N; i++) {
            c[i] = new Complex(f[2 * i], f[2 * i + 1]);
        }
        roots.computeOmega(isInverse ? -N : N);
        Complex z[] = fft(c);

        // reconstruct the FFT result for the original array
        roots.computeOmega(isInverse ? -2 * N : 2 * N);
        F[0] = new Complex(2 * (z[0].getReal() + z[0].getImaginary()), 0.0);
        F[N] = new Complex(2 * (z[0].getReal() - z[0].getImaginary()), 0.0);
        for (int i = 1; i < N; i++) {
            Complex A = z[N - i].conjugate();
            Complex B = z[i].add(A);
            Complex C = z[i].subtract(A);
            //Complex D = roots.getOmega(i).multiply(Complex.I);
            Complex D = new Complex(-roots.getOmegaImaginary(i), roots.getOmegaReal(i));
            F[i] = B.subtract(C.multiply(D));
            F[2 * N - i] = F[i].conjugate();
        }

        return scaleArray(F, 0.5);
    }

    /**
     * Perform the base-4 Cooley-Tukey FFT algorithm (including inverse).
     *
     * @param data the complex data array to be transformed
     * @return the complex transformed array
     * @throws IllegalArgumentException if any parameters are invalid
     */
    protected Complex[] fft(Complex data[]) throws IllegalArgumentException {

        final int n = data.length;
        final Complex f[] = new Complex[n];

        // initial simple cases
        verifyDataSet(data);
        if (n == 1) {
            f[0] = data[0];
            return f;
        }
        if (n == 2) {
            f[0] = data[0].add(data[1]);
            f[1] = data[0].subtract(data[1]);
            return f;
        }

        // permute original data array in bit-reversal order
        int ii = 0;
        for (int i = 0; i < n; i++) {
            f[i] = data[ii];
            int k = n >> 1;
            while (ii >= k && k > 0) {
                ii -= k;
                k >>= 1;
            }
            ii += k;
        }

        // the bottom base-4 round
        for (int i = 0; i < n; i += 4) {
            final Complex a = f[i].add(f[i + 1]);
            final Complex b = f[i + 2].add(f[i + 3]);
            final Complex c = f[i].subtract(f[i + 1]);
            final Complex d = f[i + 2].subtract(f[i + 3]);
            final Complex e1 = c.add(d.multiply(Complex.I));
            final Complex e2 = c.subtract(d.multiply(Complex.I));
            f[i] = a.add(b);
            f[i + 2] = a.subtract(b);
            // omegaCount indicates forward or inverse transform
            f[i + 1] = roots.isForward() ? e2 : e1;
            f[i + 3] = roots.isForward() ? e1 : e2;
        }

        // iterations from bottom to top take O(N*logN) time
        for (int i = 4; i < n; i <<= 1) {
            final int m = n / (i << 1);
            for (int j = 0; j < n; j += i << 1) {
                for (int k = 0; k < i; k++) {
                    //z = f[i+j+k].multiply(roots.getOmega(k*m));
                    final int k_times_m = k * m;
                    final double omega_k_times_m_real = roots.getOmegaReal(k_times_m);
                    final double omega_k_times_m_imaginary = roots.getOmegaImaginary(k_times_m);
                    //z = f[i+j+k].multiply(omega[k*m]);
                    final Complex z = new Complex(
                            f[i + j + k].getReal() * omega_k_times_m_real
                                    - f[i + j + k].getImaginary() * omega_k_times_m_imaginary,
                            f[i + j + k].getReal() * omega_k_times_m_imaginary
                                    + f[i + j + k].getImaginary() * omega_k_times_m_real);

                    f[i + j + k] = f[j + k].subtract(z);
                    f[j + k] = f[j + k].add(z);
                }
            }
        }
        return f;
    }

    /**
     * Sample the given univariate real function on the given interval.
     * <p>
     * The interval is divided equally into N sections and sample points
     * are taken from min to max-(max-min)/N. Usually f(x) is periodic
     * such that f(min) = f(max) (note max is not sampled), but we don't
     * require that.</p>
     *
     * @param f the function to be sampled
     * @param min the lower bound for the interval
     * @param max the upper bound for the interval
     * @param n the number of sample points
     * @return the samples array
     * @throws FunctionEvaluationException if function cannot be evaluated at some point
     * @throws IllegalArgumentException if any parameters are invalid
     */
    public static double[] sample(UnivariateRealFunction f, double min, double max, int n)
            throws FunctionEvaluationException, IllegalArgumentException {

        if (n <= 0) {
            throw MathRuntimeException
                    .createIllegalArgumentException(LocalizedFormats.NOT_POSITIVE_NUMBER_OF_SAMPLES, n);
        }
        verifyInterval(min, max);

        double s[] = new double[n];
        double h = (max - min) / n;
        for (int i = 0; i < n; i++) {
            s[i] = f.value(min + i * h);
        }
        return s;
    }

    /**
     * Multiply every component in the given real array by the
     * given real number. The change is made in place.
     *
     * @param f the real array to be scaled
     * @param d the real scaling coefficient
     * @return a reference to the scaled array
     */
    public static double[] scaleArray(double f[], double d) {
        for (int i = 0; i < f.length; i++) {
            f[i] *= d;
        }
        return f;
    }

    /**
     * Multiply every component in the given complex array by the
     * given real number. The change is made in place.
     *
     * @param f the complex array to be scaled
     * @param d the real scaling coefficient
     * @return a reference to the scaled array
     */
    public static Complex[] scaleArray(Complex f[], double d) {
        for (int i = 0; i < f.length; i++) {
            f[i] = new Complex(d * f[i].getReal(), d * f[i].getImaginary());
        }
        return f;
    }

    /**
     * Returns true if the argument is power of 2.
     *
     * @param n the number to test
     * @return true if the argument is power of 2
     */
    public static boolean isPowerOf2(long n) {
        return (n > 0) && ((n & (n - 1)) == 0);
    }

    /**
     * Verifies that the data set has length of power of 2.
     *
     * @param d the data array
     * @throws IllegalArgumentException if array length is not power of 2
     */
    public static void verifyDataSet(double d[]) throws IllegalArgumentException {
        if (!isPowerOf2(d.length)) {
            throw MathRuntimeException
                    .createIllegalArgumentException(LocalizedFormats.NOT_POWER_OF_TWO_CONSIDER_PADDING, d.length);
        }
    }

    /**
     * Verifies that the data set has length of power of 2.
     *
     * @param o the data array
     * @throws IllegalArgumentException if array length is not power of 2
     */
    public static void verifyDataSet(Object o[]) throws IllegalArgumentException {
        if (!isPowerOf2(o.length)) {
            throw MathRuntimeException
                    .createIllegalArgumentException(LocalizedFormats.NOT_POWER_OF_TWO_CONSIDER_PADDING, o.length);
        }
    }

    /**
     * Verifies that the endpoints specify an interval.
     *
     * @param lower lower endpoint
     * @param upper upper endpoint
     * @throws IllegalArgumentException if not interval
     */
    public static void verifyInterval(double lower, double upper) throws IllegalArgumentException {

        if (lower >= upper) {
            throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ENDPOINTS_NOT_AN_INTERVAL,
                    lower, upper);
        }
    }

    /**
     * Performs a multi-dimensional Fourier transform on a given array.
     * Use {@link #inversetransform2(Complex[])} and
     * {@link #transform2(Complex[])} in a row-column implementation
     * in any number of dimensions with O(N&times;log(N)) complexity with
     * N=n<sub>1</sub>&times;n<sub>2</sub>&times;n<sub>3</sub>&times;...&times;n<sub>d</sub>,
     * n<sub>x</sub>=number of elements in dimension x,
     * and d=total number of dimensions.
     *
     * @param mdca Multi-Dimensional Complex Array id est Complex[][][][]
     * @param forward inverseTransform2 is preformed if this is false
     * @return transform of mdca as a Multi-Dimensional Complex Array id est Complex[][][][]
     * @throws IllegalArgumentException if any dimension is not a power of two
     */
    public Object mdfft(Object mdca, boolean forward) throws IllegalArgumentException {
        MultiDimensionalComplexMatrix mdcm = (MultiDimensionalComplexMatrix) new MultiDimensionalComplexMatrix(mdca)
                .clone();
        int[] dimensionSize = mdcm.getDimensionSizes();
        //cycle through each dimension
        for (int i = 0; i < dimensionSize.length; i++) {
            mdfft(mdcm, forward, i, new int[0]);
        }
        return mdcm.getArray();
    }

    /**
     * Performs one dimension of a multi-dimensional Fourier transform.
     *
     * @param mdcm input matrix
     * @param forward inverseTransform2 is preformed if this is false
     * @param d index of the dimension to process
     * @param subVector recursion subvector
     * @throws IllegalArgumentException if any dimension is not a power of two
     */
    private void mdfft(MultiDimensionalComplexMatrix mdcm, boolean forward, int d, int[] subVector)
            throws IllegalArgumentException {
        int[] dimensionSize = mdcm.getDimensionSizes();
        //if done
        if (subVector.length == dimensionSize.length) {
            Complex[] temp = new Complex[dimensionSize[d]];
            for (int i = 0; i < dimensionSize[d]; i++) {
                //fft along dimension d
                subVector[d] = i;
                temp[i] = mdcm.get(subVector);
            }

            if (forward)
                temp = transform2(temp);
            else
                temp = inversetransform2(temp);

            for (int i = 0; i < dimensionSize[d]; i++) {
                subVector[d] = i;
                mdcm.set(temp[i], subVector);
            }
        } else {
            int[] vector = new int[subVector.length + 1];
            System.arraycopy(subVector, 0, vector, 0, subVector.length);
            if (subVector.length == d) {
                //value is not important once the recursion is done.
                //then an fft will be applied along the dimension d.
                vector[d] = 0;
                mdfft(mdcm, forward, d, vector);
            } else {
                for (int i = 0; i < dimensionSize[subVector.length]; i++) {
                    vector[subVector.length] = i;
                    //further split along the next dimension
                    mdfft(mdcm, forward, d, vector);
                }
            }
        }
        return;
    }

    /**
     * Complex matrix implementation.
     * Not designed for synchronized access
     * may eventually be replaced by jsr-83 of the java community process
     * http://jcp.org/en/jsr/detail?id=83
     * may require additional exception throws for other basic requirements.
     */
    private static class MultiDimensionalComplexMatrix implements Cloneable {

        /** Size in all dimensions. */
        protected int[] dimensionSize;

        /** Storage array. */
        protected Object multiDimensionalComplexArray;

        /** Simple constructor.
         * @param multiDimensionalComplexArray array containing the matrix elements
         */
        public MultiDimensionalComplexMatrix(Object multiDimensionalComplexArray) {

            this.multiDimensionalComplexArray = multiDimensionalComplexArray;

            // count dimensions
            int numOfDimensions = 0;
            for (Object lastDimension = multiDimensionalComplexArray; lastDimension instanceof Object[];) {
                final Object[] array = (Object[]) lastDimension;
                numOfDimensions++;
                lastDimension = array[0];
            }

            // allocate array with exact count
            dimensionSize = new int[numOfDimensions];

            // fill array
            numOfDimensions = 0;
            for (Object lastDimension = multiDimensionalComplexArray; lastDimension instanceof Object[];) {
                final Object[] array = (Object[]) lastDimension;
                dimensionSize[numOfDimensions++] = array.length;
                lastDimension = array[0];
            }

        }

        /**
         * Get a matrix element.
         * @param vector indices of the element
         * @return matrix element
         * @exception IllegalArgumentException if dimensions do not match
         */
        public Complex get(int... vector) throws IllegalArgumentException {
            if (vector == null) {
                if (dimensionSize.length > 0) {
                    throw MathRuntimeException.createIllegalArgumentException(
                            LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, 0, dimensionSize.length);
                }
                return null;
            }
            if (vector.length != dimensionSize.length) {
                throw MathRuntimeException.createIllegalArgumentException(
                        LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, vector.length, dimensionSize.length);
            }

            Object lastDimension = multiDimensionalComplexArray;

            for (int i = 0; i < dimensionSize.length; i++) {
                lastDimension = ((Object[]) lastDimension)[vector[i]];
            }
            return (Complex) lastDimension;
        }

        /**
         * Set a matrix element.
         * @param magnitude magnitude of the element
         * @param vector indices of the element
         * @return the previous value
         * @exception IllegalArgumentException if dimensions do not match
         */
        public Complex set(Complex magnitude, int... vector) throws IllegalArgumentException {
            if (vector == null) {
                if (dimensionSize.length > 0) {
                    throw MathRuntimeException.createIllegalArgumentException(
                            LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, 0, dimensionSize.length);
                }
                return null;
            }
            if (vector.length != dimensionSize.length) {
                throw MathRuntimeException.createIllegalArgumentException(
                        LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, vector.length, dimensionSize.length);
            }

            Object[] lastDimension = (Object[]) multiDimensionalComplexArray;
            for (int i = 0; i < dimensionSize.length - 1; i++) {
                lastDimension = (Object[]) lastDimension[vector[i]];
            }

            Complex lastValue = (Complex) lastDimension[vector[dimensionSize.length - 1]];
            lastDimension[vector[dimensionSize.length - 1]] = magnitude;

            return lastValue;
        }

        /**
         * Get the size in all dimensions.
         * @return size in all dimensions
         */
        public int[] getDimensionSizes() {
            return dimensionSize.clone();
        }

        /**
         * Get the underlying storage array
         * @return underlying storage array
         */
        public Object getArray() {
            return multiDimensionalComplexArray;
        }

        /** {@inheritDoc} */
        @Override
        public Object clone() {
            MultiDimensionalComplexMatrix mdcm = new MultiDimensionalComplexMatrix(
                    Array.newInstance(Complex.class, dimensionSize));
            clone(mdcm);
            return mdcm;
        }

        /**
         * Copy contents of current array into mdcm.
         * @param mdcm array where to copy data
         */
        private void clone(MultiDimensionalComplexMatrix mdcm) {
            int[] vector = new int[dimensionSize.length];
            int size = 1;
            for (int i = 0; i < dimensionSize.length; i++) {
                size *= dimensionSize[i];
            }
            int[][] vectorList = new int[size][dimensionSize.length];
            for (int[] nextVector : vectorList) {
                System.arraycopy(vector, 0, nextVector, 0, dimensionSize.length);
                for (int i = 0; i < dimensionSize.length; i++) {
                    vector[i]++;
                    if (vector[i] < dimensionSize[i]) {
                        break;
                    } else {
                        vector[i] = 0;
                    }
                }
            }

            for (int[] nextVector : vectorList) {
                mdcm.set(get(nextVector), nextVector);
            }
        }
    }

    /** Computes the n<sup>th</sup> roots of unity.
     * A cache of already computed values is maintained.
     */
    private static class RootsOfUnity implements Serializable {

        /** Serializable version id. */
        private static final long serialVersionUID = 6404784357747329667L;

        /** Number of roots of unity. */
        private int omegaCount;

        /** Real part of the roots. */
        private double[] omegaReal;

        /** Imaginary part of the roots for forward transform. */
        private double[] omegaImaginaryForward;

        /** Imaginary part of the roots for reverse transform. */
        private double[] omegaImaginaryInverse;

        /** Forward/reverse indicator. */
        private boolean isForward;

        /**
         * Build an engine for computing then <sup>th</sup> roots of unity
         */
        public RootsOfUnity() {

            omegaCount = 0;
            omegaReal = null;
            omegaImaginaryForward = null;
            omegaImaginaryInverse = null;
            isForward = true;

        }

        /**
         * Check if computation has been done for forward or reverse transform.
         * @return true if computation has been done for forward transform
         * @throws IllegalStateException if no roots of unity have been computed yet
         */
        public synchronized boolean isForward() throws IllegalStateException {

            if (omegaCount == 0) {
                throw MathRuntimeException
                        .createIllegalStateException(LocalizedFormats.ROOTS_OF_UNITY_NOT_COMPUTED_YET);
            }
            return isForward;

        }

        /** Computes the n<sup>th</sup> roots of unity.
         * <p>The computed omega[] = { 1, w, w<sup>2</sup>, ... w<sup>(n-1)</sup> } where
         * w = exp(-2 &pi; i / n), i = &sqrt;(-1).</p>
         * <p>Note that n is positive for
         * forward transform and negative for inverse transform.</p>
         * @param n number of roots of unity to compute,
         * positive for forward transform, negative for inverse transform
         * @throws IllegalArgumentException if n = 0
         */
        public synchronized void computeOmega(int n) throws IllegalArgumentException {

            if (n == 0) {
                throw MathRuntimeException
                        .createIllegalArgumentException(LocalizedFormats.CANNOT_COMPUTE_0TH_ROOT_OF_UNITY);
            }

            isForward = n > 0;

            // avoid repetitive calculations
            final int absN = FastMath.abs(n);

            if (absN == omegaCount) {
                return;
            }

            // calculate everything from scratch, for both forward and inverse versions
            final double t = 2.0 * FastMath.PI / absN;
            final double cosT = FastMath.cos(t);
            final double sinT = FastMath.sin(t);
            omegaReal = new double[absN];
            omegaImaginaryForward = new double[absN];
            omegaImaginaryInverse = new double[absN];
            omegaReal[0] = 1.0;
            omegaImaginaryForward[0] = 0.0;
            omegaImaginaryInverse[0] = 0.0;
            for (int i = 1; i < absN; i++) {
                omegaReal[i] = omegaReal[i - 1] * cosT + omegaImaginaryForward[i - 1] * sinT;
                omegaImaginaryForward[i] = omegaImaginaryForward[i - 1] * cosT - omegaReal[i - 1] * sinT;
                omegaImaginaryInverse[i] = -omegaImaginaryForward[i];
            }
            omegaCount = absN;

        }

        /**
         * Get the real part of the k<sup>th</sup> n<sup>th</sup> root of unity
         * @param k index of the n<sup>th</sup> root of unity
         * @return real part of the k<sup>th</sup> n<sup>th</sup> root of unity
         * @throws IllegalStateException if no roots of unity have been computed yet
         * @throws IllegalArgumentException if k is out of range
         */
        public synchronized double getOmegaReal(int k) throws IllegalStateException, IllegalArgumentException {

            if (omegaCount == 0) {
                throw MathRuntimeException
                        .createIllegalStateException(LocalizedFormats.ROOTS_OF_UNITY_NOT_COMPUTED_YET);
            }
            if ((k < 0) || (k >= omegaCount)) {
                throw MathRuntimeException.createIllegalArgumentException(
                        LocalizedFormats.OUT_OF_RANGE_ROOT_OF_UNITY_INDEX, k, 0, omegaCount - 1);
            }

            return omegaReal[k];

        }

        /**
         * Get the imaginary part of the k<sup>th</sup> n<sup>th</sup> root of unity
         * @param k index of the n<sup>th</sup> root of unity
         * @return imaginary part of the k<sup>th</sup> n<sup>th</sup> root of unity
         * @throws IllegalStateException if no roots of unity have been computed yet
         * @throws IllegalArgumentException if k is out of range
         */
        public synchronized double getOmegaImaginary(int k) throws IllegalStateException, IllegalArgumentException {

            if (omegaCount == 0) {
                throw MathRuntimeException
                        .createIllegalStateException(LocalizedFormats.ROOTS_OF_UNITY_NOT_COMPUTED_YET);
            }
            if ((k < 0) || (k >= omegaCount)) {
                throw MathRuntimeException.createIllegalArgumentException(
                        LocalizedFormats.OUT_OF_RANGE_ROOT_OF_UNITY_INDEX, k, 0, omegaCount - 1);
            }

            return isForward ? omegaImaginaryForward[k] : omegaImaginaryInverse[k];

        }

    }

}