org.apache.commons.math.stat.inference.OneWayAnovaImpl.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.commons.math.stat.inference.OneWayAnovaImpl.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.stat.inference;

import java.util.Collection;

import org.apache.commons.math.MathException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.distribution.FDistribution;
import org.apache.commons.math.distribution.FDistributionImpl;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.stat.descriptive.summary.Sum;
import org.apache.commons.math.stat.descriptive.summary.SumOfSquares;

/**
 * Implements one-way ANOVA statistics defined in the {@link OneWayAnovaImpl}
 * interface.
 *
 * <p>Uses the
 * {@link org.apache.commons.math.distribution.FDistribution
 *  commons-math F Distribution implementation} to estimate exact p-values.</p>
 *
 * <p>This implementation is based on a description at
 * http://faculty.vassar.edu/lowry/ch13pt1.html</p>
 * <pre>
 * Abbreviations: bg = between groups,
 *                wg = within groups,
 *                ss = sum squared deviations
 * </pre>
 *
 * @since 1.2
 * @version $Revision: 983921 $ $Date: 2010-08-10 12:46:06 +0200 (mar. 10 aot 2010) $
 */
public class OneWayAnovaImpl implements OneWayAnova {

    /**
     * Default constructor.
     */
    public OneWayAnovaImpl() {
    }

    /**
     * {@inheritDoc}<p>
     * This implementation computes the F statistic using the definitional
     * formula<pre>
     *   F = msbg/mswg</pre>
     * where<pre>
     *  msbg = between group mean square
     *  mswg = within group mean square</pre>
     * are as defined <a href="http://faculty.vassar.edu/lowry/ch13pt1.html">
     * here</a></p>
     */
    public double anovaFValue(Collection<double[]> categoryData) throws IllegalArgumentException, MathException {
        AnovaStats a = anovaStats(categoryData);
        return a.F;
    }

    /**
     * {@inheritDoc}<p>
     * This implementation uses the
     * {@link org.apache.commons.math.distribution.FDistribution
     * commons-math F Distribution implementation} to estimate the exact
     * p-value, using the formula<pre>
     *   p = 1 - cumulativeProbability(F)</pre>
     * where <code>F</code> is the F value and <code>cumulativeProbability</code>
     * is the commons-math implementation of the F distribution.</p>
     */
    public double anovaPValue(Collection<double[]> categoryData) throws IllegalArgumentException, MathException {
        AnovaStats a = anovaStats(categoryData);
        FDistribution fdist = new FDistributionImpl(a.dfbg, a.dfwg);
        return 1.0 - fdist.cumulativeProbability(a.F);
    }

    /**
     * {@inheritDoc}<p>
     * This implementation uses the
     * {@link org.apache.commons.math.distribution.FDistribution
     * commons-math F Distribution implementation} to estimate the exact
     * p-value, using the formula<pre>
     *   p = 1 - cumulativeProbability(F)</pre>
     * where <code>F</code> is the F value and <code>cumulativeProbability</code>
     * is the commons-math implementation of the F distribution.</p>
     * <p>True is returned iff the estimated p-value is less than alpha.</p>
     */
    public boolean anovaTest(Collection<double[]> categoryData, double alpha)
            throws IllegalArgumentException, MathException {
        if ((alpha <= 0) || (alpha > 0.5)) {
            throw MathRuntimeException.createIllegalArgumentException(
                    LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL, alpha, 0, 0.5);
        }
        return anovaPValue(categoryData) < alpha;
    }

    /**
     * This method actually does the calculations (except P-value).
     *
     * @param categoryData <code>Collection</code> of <code>double[]</code>
     * arrays each containing data for one category
     * @return computed AnovaStats
     * @throws IllegalArgumentException if categoryData does not meet
     * preconditions specified in the interface definition
     * @throws MathException if an error occurs computing the Anova stats
     */
    private AnovaStats anovaStats(Collection<double[]> categoryData)
            throws IllegalArgumentException, MathException {

        // check if we have enough categories
        if (categoryData.size() < 2) {
            throw MathRuntimeException.createIllegalArgumentException(
                    LocalizedFormats.TWO_OR_MORE_CATEGORIES_REQUIRED, categoryData.size());
        }

        // check if each category has enough data and all is double[]
        for (double[] array : categoryData) {
            if (array.length <= 1) {
                throw MathRuntimeException.createIllegalArgumentException(
                        LocalizedFormats.TWO_OR_MORE_VALUES_IN_CATEGORY_REQUIRED, array.length);
            }
        }

        int dfwg = 0;
        double sswg = 0;
        Sum totsum = new Sum();
        SumOfSquares totsumsq = new SumOfSquares();
        int totnum = 0;

        for (double[] data : categoryData) {

            Sum sum = new Sum();
            SumOfSquares sumsq = new SumOfSquares();
            int num = 0;

            for (int i = 0; i < data.length; i++) {
                double val = data[i];

                // within category
                num++;
                sum.increment(val);
                sumsq.increment(val);

                // for all categories
                totnum++;
                totsum.increment(val);
                totsumsq.increment(val);
            }
            dfwg += num - 1;
            double ss = sumsq.getResult() - sum.getResult() * sum.getResult() / num;
            sswg += ss;
        }
        double sst = totsumsq.getResult() - totsum.getResult() * totsum.getResult() / totnum;
        double ssbg = sst - sswg;
        int dfbg = categoryData.size() - 1;
        double msbg = ssbg / dfbg;
        double mswg = sswg / dfwg;
        double F = msbg / mswg;

        return new AnovaStats(dfbg, dfwg, F);
    }

    /**
    Convenience class to pass dfbg,dfwg,F values around within AnovaImpl.
    No get/set methods provided.
    */
    private static class AnovaStats {

        /** Degrees of freedom in numerator (between groups). */
        private int dfbg;

        /** Degrees of freedom in denominator (within groups). */
        private int dfwg;

        /** Statistic. */
        private double F;

        /**
         * Constructor
         * @param dfbg degrees of freedom in numerator (between groups)
         * @param dfwg degrees of freedom in denominator (within groups)
         * @param F statistic
         */
        private AnovaStats(int dfbg, int dfwg, double F) {
            this.dfbg = dfbg;
            this.dfwg = dfwg;
            this.F = F;
        }
    }

}