Java tutorial
/* * Copyright 2003-2004 The Apache Software Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.stat.descriptive; import java.io.Serializable; import org.apache.commons.math.util.ResizableDoubleArray; /** * Default implementation of * {@link org.apache.commons.math.stat.descriptive.DescriptiveStatistics}. * * @version $Revision: 1.1 $ $Date: 2004/10/08 05:08:17 $ */ public class DescriptiveStatisticsImpl extends DescriptiveStatistics implements Serializable { /** Serializable version identifier */ static final long serialVersionUID = -1868088725461221010L; /** hold the window size **/ protected int windowSize; /** * Stored data values */ protected ResizableDoubleArray eDA; /** * Construct a DescriptiveStatisticsImpl with infinite window */ public DescriptiveStatisticsImpl() { this(INFINITE_WINDOW); } /** * Construct a DescriptiveStatisticsImpl with finite window * @param window the finite window size. */ public DescriptiveStatisticsImpl(int window) { super(); eDA = new ResizableDoubleArray(); setWindowSize(window); } /** * Access the window size. * @return the current window size. */ public int getWindowSize() { return windowSize; } /** * @see org.apache.commons.math.stat.descriptive.DescriptiveStatistics#getValues() */ public double[] getValues() { double[] copiedArray = new double[eDA.getNumElements()]; System.arraycopy(eDA.getElements(), 0, copiedArray, 0, eDA.getNumElements()); return copiedArray; } /** * @see org.apache.commons.math.stat.descriptive.DescriptiveStatistics#getElement(int) */ public double getElement(int index) { return eDA.getElement(index); } /** * @see org.apache.commons.math.stat.descriptive.DescriptiveStatistics#getN() */ public long getN() { return eDA.getNumElements(); } /** * @see org.apache.commons.math.stat.descriptive.DescriptiveStatistics#addValue(double) */ public void addValue(double v) { if (windowSize != INFINITE_WINDOW) { if (getN() == windowSize) { eDA.addElementRolling(v); } else if (getN() < windowSize) { eDA.addElement(v); } } else { eDA.addElement(v); } } /** * @see org.apache.commons.math.stat.descriptive.DescriptiveStatistics#clear() */ public void clear() { eDA.clear(); } /** * @see org.apache.commons.math.stat.descriptive.DescriptiveStatistics#setWindowSize(int) */ public void setWindowSize(int windowSize) { if (windowSize < 1) { if (windowSize != INFINITE_WINDOW) { throw new IllegalArgumentException("window size must be positive."); } } this.windowSize = windowSize; // We need to check to see if we need to discard elements // from the front of the array. If the windowSize is less than // the current number of elements. if (windowSize != INFINITE_WINDOW && windowSize < eDA.getNumElements()) { eDA.discardFrontElements(eDA.getNumElements() - windowSize); } } /** * Apply the given statistic to this univariate collection. * @param stat the statistic to apply * @return the computed value of the statistic. */ public double apply(UnivariateStatistic stat) { return stat.evaluate(eDA.getValues(), eDA.start(), eDA.getNumElements()); } }