Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.stat.correlation; import org.apache.commons.math.MathRuntimeException; import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.linear.RealMatrix; import org.apache.commons.math.linear.BlockRealMatrix; import org.apache.commons.math.stat.descriptive.moment.Mean; import org.apache.commons.math.stat.descriptive.moment.Variance; /** * Computes covariances for pairs of arrays or columns of a matrix. * * <p>The constructors that take <code>RealMatrix</code> or * <code>double[][]</code> arguments generate covariance matrices. The * columns of the input matrices are assumed to represent variable values.</p> * * <p>The constructor argument <code>biasCorrected</code> determines whether or * not computed covariances are bias-corrected.</p> * * <p>Unbiased covariances are given by the formula</p> * <code>cov(X, Y) = Σ[(x<sub>i</sub> - E(X))(y<sub>i</sub> - E(Y))] / (n - 1)</code> * where <code>E(X)</code> is the mean of <code>X</code> and <code>E(Y)</code> * is the mean of the <code>Y</code> values. * * <p>Non-bias-corrected estimates use <code>n</code> in place of <code>n - 1</code> * * @version $Revision: 983921 $ $Date: 2010-08-10 12:46:06 +0200 (mar. 10 aot 2010) $ * @since 2.0 */ public class Covariance { /** covariance matrix */ private final RealMatrix covarianceMatrix; /** * Create an empty covariance matrix. */ /** Number of observations (length of covariate vectors) */ private final int n; /** * Create a Covariance with no data */ public Covariance() { super(); covarianceMatrix = null; n = 0; } /** * Create a Covariance matrix from a rectangular array * whose columns represent covariates. * * <p>The <code>biasCorrected</code> parameter determines whether or not * covariance estimates are bias-corrected.</p> * * <p>The input array must be rectangular with at least two columns * and two rows.</p> * * @param data rectangular array with columns representing covariates * @param biasCorrected true means covariances are bias-corrected * @throws IllegalArgumentException if the input data array is not * rectangular with at least two rows and two columns. */ public Covariance(double[][] data, boolean biasCorrected) { this(new BlockRealMatrix(data), biasCorrected); } /** * Create a Covariance matrix from a rectangular array * whose columns represent covariates. * * <p>The input array must be rectangular with at least two columns * and two rows</p> * * @param data rectangular array with columns representing covariates * @throws IllegalArgumentException if the input data array is not * rectangular with at least two rows and two columns. */ public Covariance(double[][] data) { this(data, true); } /** * Create a covariance matrix from a matrix whose columns * represent covariates. * * <p>The <code>biasCorrected</code> parameter determines whether or not * covariance estimates are bias-corrected.</p> * * <p>The matrix must have at least two columns and two rows</p> * * @param matrix matrix with columns representing covariates * @param biasCorrected true means covariances are bias-corrected * @throws IllegalArgumentException if the input matrix does not have * at least two rows and two columns */ public Covariance(RealMatrix matrix, boolean biasCorrected) { checkSufficientData(matrix); n = matrix.getRowDimension(); covarianceMatrix = computeCovarianceMatrix(matrix, biasCorrected); } /** * Create a covariance matrix from a matrix whose columns * represent covariates. * * <p>The matrix must have at least two columns and two rows</p> * * @param matrix matrix with columns representing covariates * @throws IllegalArgumentException if the input matrix does not have * at least two rows and two columns */ public Covariance(RealMatrix matrix) { this(matrix, true); } /** * Returns the covariance matrix * * @return covariance matrix */ public RealMatrix getCovarianceMatrix() { return covarianceMatrix; } /** * Returns the number of observations (length of covariate vectors) * * @return number of observations */ public int getN() { return n; } /** * Compute a covariance matrix from a matrix whose columns represent * covariates. * @param matrix input matrix (must have at least two columns and two rows) * @param biasCorrected determines whether or not covariance estimates are bias-corrected * @return covariance matrix */ protected RealMatrix computeCovarianceMatrix(RealMatrix matrix, boolean biasCorrected) { int dimension = matrix.getColumnDimension(); Variance variance = new Variance(biasCorrected); RealMatrix outMatrix = new BlockRealMatrix(dimension, dimension); for (int i = 0; i < dimension; i++) { for (int j = 0; j < i; j++) { double cov = covariance(matrix.getColumn(i), matrix.getColumn(j), biasCorrected); outMatrix.setEntry(i, j, cov); outMatrix.setEntry(j, i, cov); } outMatrix.setEntry(i, i, variance.evaluate(matrix.getColumn(i))); } return outMatrix; } /** * Create a covariance matrix from a matrix whose columns represent * covariates. Covariances are computed using the bias-corrected formula. * @param matrix input matrix (must have at least two columns and two rows) * @return covariance matrix * @see #Covariance */ protected RealMatrix computeCovarianceMatrix(RealMatrix matrix) { return computeCovarianceMatrix(matrix, true); } /** * Compute a covariance matrix from a rectangular array whose columns represent * covariates. * @param data input array (must have at least two columns and two rows) * @param biasCorrected determines whether or not covariance estimates are bias-corrected * @return covariance matrix */ protected RealMatrix computeCovarianceMatrix(double[][] data, boolean biasCorrected) { return computeCovarianceMatrix(new BlockRealMatrix(data), biasCorrected); } /** * Create a covariance matrix from a rectangual array whose columns represent * covariates. Covariances are computed using the bias-corrected formula. * @param data input array (must have at least two columns and two rows) * @return covariance matrix * @see #Covariance */ protected RealMatrix computeCovarianceMatrix(double[][] data) { return computeCovarianceMatrix(data, true); } /** * Computes the covariance between the two arrays. * * <p>Array lengths must match and the common length must be at least 2.</p> * * @param xArray first data array * @param yArray second data array * @param biasCorrected if true, returned value will be bias-corrected * @return returns the covariance for the two arrays * @throws IllegalArgumentException if the arrays lengths do not match or * there is insufficient data */ public double covariance(final double[] xArray, final double[] yArray, boolean biasCorrected) throws IllegalArgumentException { Mean mean = new Mean(); double result = 0d; int length = xArray.length; if (length != yArray.length) { throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, length, yArray.length); } else if (length < 2) { throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.INSUFFICIENT_DIMENSION, length, 2); } else { double xMean = mean.evaluate(xArray); double yMean = mean.evaluate(yArray); for (int i = 0; i < length; i++) { double xDev = xArray[i] - xMean; double yDev = yArray[i] - yMean; result += (xDev * yDev - result) / (i + 1); } } return biasCorrected ? result * ((double) length / (double) (length - 1)) : result; } /** * Computes the covariance between the two arrays, using the bias-corrected * formula. * * <p>Array lengths must match and the common length must be at least 2.</p> * * @param xArray first data array * @param yArray second data array * @return returns the covariance for the two arrays * @throws IllegalArgumentException if the arrays lengths do not match or * there is insufficient data */ public double covariance(final double[] xArray, final double[] yArray) throws IllegalArgumentException { return covariance(xArray, yArray, true); } /** * Throws IllegalArgumentException of the matrix does not have at least * two columns and two rows * @param matrix matrix to check */ private void checkSufficientData(final RealMatrix matrix) { int nRows = matrix.getRowDimension(); int nCols = matrix.getColumnDimension(); if (nRows < 2 || nCols < 2) { throw MathRuntimeException .createIllegalArgumentException(LocalizedFormats.INSUFFICIENT_ROWS_AND_COLUMNS, nRows, nCols); } } }