Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.special; import org.apache.commons.math.MathException; import org.apache.commons.math.util.FastMath; /** * This is a utility class that provides computation methods related to the * error functions. * * @version $Revision: 1054186 $ $Date: 2011-01-01 03:28:46 +0100 (sam. 01 janv. 2011) $ */ public class Erf { /** * Default constructor. Prohibit instantiation. */ private Erf() { super(); } /** * <p>Returns the error function</p> * <p>erf(x) = 2/√π <sub>0</sub>∫<sup>x</sup> e<sup>-t<sup>2</sup></sup>dt </p> * * <p>This implementation computes erf(x) using the * {@link Gamma#regularizedGammaP(double, double, double, int) regularized gamma function}, * following <a href="http://mathworld.wolfram.com/Erf.html"> Erf</a>, equation (3)</p> * * <p>The value returned is always between -1 and 1 (inclusive). If {@code abs(x) > 40}, then * {@code erf(x)} is indistinguishable from either 1 or -1 as a double, so the appropriate extreme * value is returned.</p> * * @param x the value. * @return the error function erf(x) * @throws MathException if the algorithm fails to converge. * @see Gamma#regularizedGammaP(double, double, double, int) */ public static double erf(double x) throws MathException { if (FastMath.abs(x) > 40) { return x > 0 ? 1 : -1; } double ret = Gamma.regularizedGammaP(0.5, x * x, 1.0e-15, 10000); if (x < 0) { ret = -ret; } return ret; } /** * <p>Returns the complementary error function</p> * <p>erfc(x) = 2/√π <sub>x</sub>∫<sup>∞</sup> e<sup>-t<sup>2</sup></sup>dt <br/> * = 1 - {@link #erf(double) erf(x)} </p> * * <p>This implementation computes erfc(x) using the * {@link Gamma#regularizedGammaQ(double, double, double, int) regularized gamma function}, * following <a href="http://mathworld.wolfram.com/Erf.html"> Erf</a>, equation (3).</p> * * <p>The value returned is always between 0 and 2 (inclusive). If {@code abs(x) > 40}, then * {@code erf(x)} is indistinguishable from either 0 or 2 as a double, so the appropriate extreme * value is returned.</p> * * @param x the value * @return the complementary error function erfc(x) * @throws MathException if the algorithm fails to converge * @see Gamma#regularizedGammaQ(double, double, double, int) * @since 2.2 */ public static double erfc(double x) throws MathException { if (FastMath.abs(x) > 40) { return x > 0 ? 0 : 2; } final double ret = Gamma.regularizedGammaQ(0.5, x * x, 1.0e-15, 10000); return x < 0 ? 2 - ret : ret; } }