Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.optimization.general; import org.apache.commons.math.FunctionEvaluationException; import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.linear.BlockRealMatrix; import org.apache.commons.math.linear.DecompositionSolver; import org.apache.commons.math.linear.InvalidMatrixException; import org.apache.commons.math.linear.LUDecompositionImpl; import org.apache.commons.math.linear.QRDecompositionImpl; import org.apache.commons.math.linear.RealMatrix; import org.apache.commons.math.optimization.OptimizationException; import org.apache.commons.math.optimization.VectorialPointValuePair; /** * Gauss-Newton least-squares solver. * <p> * This class solve a least-square problem by solving the normal equations * of the linearized problem at each iteration. Either LU decomposition or * QR decomposition can be used to solve the normal equations. LU decomposition * is faster but QR decomposition is more robust for difficult problems. * </p> * * @version $Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 fvr. 2011) $ * @since 2.0 * */ public class GaussNewtonOptimizer extends AbstractLeastSquaresOptimizer { /** Indicator for using LU decomposition. */ private final boolean useLU; /** Simple constructor with default settings. * <p>The convergence check is set to a {@link * org.apache.commons.math.optimization.SimpleVectorialValueChecker} * and the maximal number of evaluation is set to * {@link AbstractLeastSquaresOptimizer#DEFAULT_MAX_ITERATIONS}. * @param useLU if true, the normal equations will be solved using LU * decomposition, otherwise they will be solved using QR decomposition */ public GaussNewtonOptimizer(final boolean useLU) { this.useLU = useLU; } /** {@inheritDoc} */ @Override public VectorialPointValuePair doOptimize() throws FunctionEvaluationException, OptimizationException, IllegalArgumentException { // iterate until convergence is reached VectorialPointValuePair current = null; for (boolean converged = false; !converged;) { incrementIterationsCounter(); // evaluate the objective function and its jacobian VectorialPointValuePair previous = current; updateResidualsAndCost(); updateJacobian(); current = new VectorialPointValuePair(point, objective); // build the linear problem final double[] b = new double[cols]; final double[][] a = new double[cols][cols]; for (int i = 0; i < rows; ++i) { final double[] grad = jacobian[i]; final double weight = residualsWeights[i]; final double residual = objective[i] - targetValues[i]; // compute the normal equation final double wr = weight * residual; for (int j = 0; j < cols; ++j) { b[j] += wr * grad[j]; } // build the contribution matrix for measurement i for (int k = 0; k < cols; ++k) { double[] ak = a[k]; double wgk = weight * grad[k]; for (int l = 0; l < cols; ++l) { ak[l] += wgk * grad[l]; } } } try { // solve the linearized least squares problem RealMatrix mA = new BlockRealMatrix(a); DecompositionSolver solver = useLU ? new LUDecompositionImpl(mA).getSolver() : new QRDecompositionImpl(mA).getSolver(); final double[] dX = solver.solve(b); // update the estimated parameters for (int i = 0; i < cols; ++i) { point[i] += dX[i]; } } catch (InvalidMatrixException e) { throw new OptimizationException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM); } // check convergence if (previous != null) { converged = checker.converged(getIterations(), previous, current); } } // we have converged return current; } }