Java tutorial
/* * Copyright 2003-2004 The Apache Software Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import org.apache.commons.discovery.tools.DiscoverClass; /** * This factory provids the means to create common statistical distributions. * The following distributions are supported: * <ul> * <li>Binomial</li> * <li>Chi-Squared</li> * <li>Exponential</li> * <li>F</li> * <li>Gamma</li> * <li>HyperGeometric</li> * <li>Poisson</li> * <li>Normal</li> * <li>Student's t</li> * </ul> * * Common usage:<pre> * DistributionFactory factory = DistributionFactory.newInstance(); * * // create a Chi-Square distribution with 5 degrees of freedom. * ChiSquaredDistribution chi = factory.createChiSquareDistribution(5.0); * </pre> * * @version $Revision: 1.22 $ $Date: 2004/11/07 03:32:48 $ */ public abstract class DistributionFactory { /** * Default constructor. */ protected DistributionFactory() { super(); } /** * Create an instance of a <code>DistributionFactory</code> * @return a new factory. */ public static DistributionFactory newInstance() { DistributionFactory factory = null; try { DiscoverClass dc = new DiscoverClass(); factory = (DistributionFactory) dc.newInstance(DistributionFactory.class, "org.apache.commons.math.distribution.DistributionFactoryImpl"); } catch (Throwable t) { return new DistributionFactoryImpl(); } return factory; } /** * Create a binomial distribution with the given number of trials and * probability of success. * * @param numberOfTrials the number of trials. * @param probabilityOfSuccess the probability of success * @return a new binomial distribution */ public abstract BinomialDistribution createBinomialDistribution(int numberOfTrials, double probabilityOfSuccess); /** * Create a new chi-square distribution with the given degrees of freedom. * * @param degreesOfFreedom degrees of freedom * @return a new chi-square distribution */ public abstract ChiSquaredDistribution createChiSquareDistribution(double degreesOfFreedom); /** * Create a new exponential distribution with the given degrees of freedom. * * @param mean mean * @return a new exponential distribution */ public abstract ExponentialDistribution createExponentialDistribution(double mean); /** * Create a new F-distribution with the given degrees of freedom. * * @param numeratorDegreesOfFreedom numerator degrees of freedom * @param denominatorDegreesOfFreedom denominator degrees of freedom * @return a new F-distribution */ public abstract FDistribution createFDistribution(double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom); /** * Create a new gamma distribution with the given shape and scale * parameters. * * @param alpha the shape parameter * @param beta the scale parameter * * @return a new gamma distribution */ public abstract GammaDistribution createGammaDistribution(double alpha, double beta); /** * Create a new t distribution with the given degrees of freedom. * * @param degreesOfFreedom degrees of freedom * @return a new t distribution */ public abstract TDistribution createTDistribution(double degreesOfFreedom); /** * Create a new hypergeometric distribution with the given the population * size, the number of successes in the population, and the sample size. * * @param populationSize the population size * @param numberOfSuccesses number of successes in the population * @param sampleSize the sample size * @return a new hypergeometric desitribution */ public abstract HypergeometricDistribution createHypergeometricDistribution(int populationSize, int numberOfSuccesses, int sampleSize); /** * Create a new normal distribution with the given mean and standard * deviation. * * @param mean the mean of the distribution * @param sd standard deviation * @return a new normal distribution */ public abstract NormalDistribution createNormalDistribution(double mean, double sd); /** * Create a new normal distribution with mean zero and standard * deviation one. * * @return a new normal distribution. */ public abstract NormalDistribution createNormalDistribution(); /** * Create a new Poisson distribution with poisson parameter lambda. * * @param lambda poisson parameter * @return a new normal distribution. */ public abstract PoissonDistribution createPoissonDistribution(double lambda); }