Java tutorial
/* * Copyright (C) Stichting Akvo (Akvo Foundation) * * This file is part of Akvo Caddisfly. * * Akvo Caddisfly is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Akvo Caddisfly is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Akvo Caddisfly. If not, see <http://www.gnu.org/licenses/>. */ package org.akvo.caddisfly.helper; import android.graphics.Bitmap; import android.graphics.Point; import android.support.annotation.NonNull; import org.opencv.android.Utils; import org.opencv.core.CvType; import org.opencv.core.Mat; import org.opencv.core.Scalar; import org.opencv.imgproc.Imgproc; public final class ImageHelper { private static final Scalar COLOR_GREEN = new Scalar(0, 255, 0); private static final int MIN_RADIUS = 30; private static final int MAX_RADIUS = 70; // minimum distance between the center coordinates of detected circles in pixels private static final int MIN_CIRCLE_CENTER_DISTANCE = 70; private static final double RESOLUTION_INVERSE_RATIO = 1.2d; private ImageHelper() { } // http://stackoverflow.com/questions/28401343/detect-circle-in-image-using-opencv-in-android /** * Gets the center of the backdrop in the test chamber * * @param bitmap the photo to analyse * @return the center point of the found circle */ public static Point getCenter(@NonNull Bitmap bitmap) { // convert bitmap to mat Mat mat = new Mat(bitmap.getWidth(), bitmap.getHeight(), CvType.CV_8UC1); Mat grayMat = new Mat(bitmap.getWidth(), bitmap.getHeight(), CvType.CV_8UC1); Utils.bitmapToMat(bitmap, mat); // convert to grayScale int colorChannels = (mat.channels() == 3) ? Imgproc.COLOR_BGR2GRAY : ((mat.channels() == 4) ? Imgproc.COLOR_BGRA2GRAY : 1); Imgproc.cvtColor(mat, grayMat, colorChannels); // reduce the noise so we avoid false circle detection //Imgproc.GaussianBlur(grayMat, grayMat, new Size(9, 9), 2, 2); // param1 = gradient value used to handle edge detection // param2 = Accumulator threshold value for the // cv2.CV_HOUGH_GRADIENT method. // The smaller the threshold is, the more circles will be // detected (including false circles). // The larger the threshold is, the more circles will // potentially be returned. double param1 = 10, param2 = 100; // create a Mat object to store the circles detected Mat circles = new Mat(bitmap.getWidth(), bitmap.getHeight(), CvType.CV_8UC1); // find the circle in the image Imgproc.HoughCircles(grayMat, circles, Imgproc.CV_HOUGH_GRADIENT, RESOLUTION_INVERSE_RATIO, (double) MIN_CIRCLE_CENTER_DISTANCE, param1, param2, MIN_RADIUS, MAX_RADIUS); int numberOfCircles = (circles.rows() == 0) ? 0 : circles.cols(); // draw the circles found on the image if (numberOfCircles > 0) { double[] circleCoordinates = circles.get(0, 0); int x = (int) circleCoordinates[0], y = (int) circleCoordinates[1]; org.opencv.core.Point center = new org.opencv.core.Point(x, y); int foundRadius = (int) circleCoordinates[2]; // circle outline Imgproc.circle(mat, center, foundRadius, COLOR_GREEN, 4); Utils.matToBitmap(mat, bitmap); return new Point((int) center.x, (int) center.y); } return null; } }