Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package opennlp.model; import java.io.IOException; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.LinkedList; import java.util.List; import java.util.Map; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; /** * An indexer for maxent model data which handles cutoffs for uncommon * contextual predicates and provides a unique integer index for each of the * predicates and maintains event values. */ public class OnePassRealValueDataIndexer extends OnePassDataIndexer { private static final Log LOG = LogFactory.getLog(OnePassRealValueDataIndexer.class); float[][] values; public OnePassRealValueDataIndexer(EventStream eventStream, int cutoff, boolean sort) throws IOException { super(eventStream, cutoff, sort); } /** * Two argument constructor for DataIndexer. * @param eventStream An Event[] which contains the a list of all the Events * seen in the training data. * @param cutoff The minimum number of times a predicate must have been * observed in order to be included in the model. */ public OnePassRealValueDataIndexer(EventStream eventStream, int cutoff) throws IOException { super(eventStream, cutoff); } public float[][] getValues() { return values; } protected int sortAndMerge(List eventsToCompare, boolean sort) { int numUniqueEvents = super.sortAndMerge(eventsToCompare, sort); values = new float[numUniqueEvents][]; int numEvents = eventsToCompare.size(); for (int i = 0, j = 0; i < numEvents; i++) { ComparableEvent evt = (ComparableEvent) eventsToCompare.get(i); if (null == evt) { continue; // this was a dupe, skip over it. } values[j++] = evt.values; } return numUniqueEvents; } protected List index(LinkedList<Event> events, Map<String, Integer> predicateIndex) { Map<String, Integer> omap = new HashMap<String, Integer>(); int numEvents = events.size(); int outcomeCount = 0; List eventsToCompare = new ArrayList(numEvents); List<Integer> indexedContext = new ArrayList<Integer>(); for (int eventIndex = 0; eventIndex < numEvents; eventIndex++) { Event ev = (Event) events.removeFirst(); String[] econtext = ev.getContext(); ComparableEvent ce; int ocID; String oc = ev.getOutcome(); if (omap.containsKey(oc)) { ocID = omap.get(oc); } else { ocID = outcomeCount++; omap.put(oc, ocID); } for (int i = 0; i < econtext.length; i++) { String pred = econtext[i]; if (predicateIndex.containsKey(pred)) { indexedContext.add(predicateIndex.get(pred)); } } //drop events with no active features if (indexedContext.size() > 0) { int[] cons = new int[indexedContext.size()]; for (int ci = 0; ci < cons.length; ci++) { cons[ci] = indexedContext.get(ci); } ce = new ComparableEvent(ocID, cons, ev.getValues()); eventsToCompare.add(ce); } else { LOG.debug("Dropped event " + ev.getOutcome() + ":" + Arrays.asList(ev.getContext())); } // recycle the TIntArrayList indexedContext.clear(); } outcomeLabels = toIndexedStringArray(omap); predLabels = toIndexedStringArray(predicateIndex); return eventsToCompare; } }