Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations */ package nl.gridline.zieook.inx.movielens; import java.io.IOException; import java.util.Iterator; import java.util.PriorityQueue; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IOUtils; import org.apache.hadoop.mapreduce.Mapper; import org.apache.mahout.cf.taste.hadoop.item.VectorOrPrefWritable; import org.apache.mahout.cf.taste.impl.common.FastIDSet; import org.apache.mahout.common.iterator.FileLineIterable; import org.apache.mahout.math.VarIntWritable; import org.apache.mahout.math.VarLongWritable; import org.apache.mahout.math.Vector; import org.apache.mahout.math.VectorWritable; /** * [purpose] * <p /> * Project zieook-movielens<br /> * UserVectorSplitterMapper.java created 21 nov. 2011 * <p /> * Copyright, all rights reserved 2011 GridLine Amsterdam * @author <a href="mailto:job@gridline.nl">Job</a> * @version $Revision:$, $Date:$ */ public class UserVectorSplitterMapper extends Mapper<VarLongWritable, VectorWritable, VarIntWritable, VectorOrPrefWritable> { public static final String USERS_FILE = "usersFile"; public static final String MAX_PREFS_PER_USER_CONSIDERED = "maxPrefsPerUserConsidered"; public static final int DEFAULT_MAX_PREFS_PER_USER_CONSIDERED = 10; private int maxPrefsPerUserConsidered; private FastIDSet usersToRecommendFor; @Override protected void setup(Context context) throws IOException { Configuration jobConf = context.getConfiguration(); maxPrefsPerUserConsidered = jobConf.getInt(MAX_PREFS_PER_USER_CONSIDERED, DEFAULT_MAX_PREFS_PER_USER_CONSIDERED); String usersFilePathString = jobConf.get(USERS_FILE); if (usersFilePathString != null) { FSDataInputStream in = null; try { Path unqualifiedUsersFilePath = new Path(usersFilePathString); FileSystem fs = FileSystem.get(unqualifiedUsersFilePath.toUri(), jobConf); usersToRecommendFor = new FastIDSet(); Path usersFilePath = unqualifiedUsersFilePath.makeQualified(fs); in = fs.open(usersFilePath); for (String line : new FileLineIterable(in)) { usersToRecommendFor.add(Long.parseLong(line)); } } finally { IOUtils.closeStream(in); } } } @Override protected void map(VarLongWritable key, VectorWritable value, Context context) throws IOException, InterruptedException { long userID = key.get(); if (usersToRecommendFor != null && !usersToRecommendFor.contains(userID)) { return; } Vector userVector = maybePruneUserVector(value.get()); Iterator<Vector.Element> it = userVector.iterateNonZero(); VarIntWritable itemIndexWritable = new VarIntWritable(); VectorOrPrefWritable vectorOrPref = new VectorOrPrefWritable(); while (it.hasNext()) { Vector.Element e = it.next(); itemIndexWritable.set(e.index()); vectorOrPref.set(userID, (float) e.get()); context.write(itemIndexWritable, vectorOrPref); } } private Vector maybePruneUserVector(Vector userVector) { if (userVector.getNumNondefaultElements() <= maxPrefsPerUserConsidered) { return userVector; } float smallestLargeValue = findSmallestLargeValue(userVector); // "Blank out" small-sized prefs to reduce the amount of partial products // generated later. They're not zeroed, but NaN-ed, so they come through // and can be used to exclude these items from prefs. Iterator<Vector.Element> it = userVector.iterateNonZero(); while (it.hasNext()) { Vector.Element e = it.next(); float absValue = Math.abs((float) e.get()); if (absValue < smallestLargeValue) { e.set(Float.NaN); } } return userVector; } private float findSmallestLargeValue(Vector userVector) { PriorityQueue<Float> topPrefValues = new PriorityQueue<Float>(maxPrefsPerUserConsidered + 1); Iterator<Vector.Element> it = userVector.iterateNonZero(); while (it.hasNext()) { float absValue = Math.abs((float) it.next().get()); if (topPrefValues.size() < maxPrefsPerUserConsidered) { topPrefValues.add(absValue); } else { if (absValue > topPrefValues.peek()) { topPrefValues.add(absValue); topPrefValues.poll(); } } } return topPrefValues.peek(); } }