net.sf.jclal.classifier.WekaClassifier.java Source code

Java tutorial

Introduction

Here is the source code for net.sf.jclal.classifier.WekaClassifier.java

Source

/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 */
package net.sf.jclal.classifier;

import java.util.logging.Level;
import java.util.logging.Logger;
import net.sf.jclal.core.IConfigure;
import net.sf.jclal.core.IDataset;
import net.sf.jclal.evaluation.measure.AbstractEvaluation;
import net.sf.jclal.evaluation.measure.SingleLabelEvaluation;
import org.apache.commons.configuration.Configuration;
import org.apache.commons.configuration.ConfigurationRuntimeException;
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.core.Instance;
import weka.core.Instances;

/**
 * Classifier of Weka type.
 *
 * @author Oscar Gabriel Reyes Pupo
 * @author Eduardo Perez Perdomo
 */
public class WekaClassifier extends AbstractClassifier {

    private static final long serialVersionUID = 1765269739169476036L;

    /**
     * Classifier from Weka.
     */
    private Classifier classifier;

    /**
     * Constructs the learning model from the dataset.
     *
     * @param instances The instances to train the classifier
     * @throws Exception The exception that will be launched.
     */
    @Override
    public void buildClassifier(IDataset instances) throws Exception {

        classifier.buildClassifier(instances.getDataset());
    }

    /**
     *
     * @param instance The instance to classify.
     * @return The predicted label for the classifier.
     * @throws Exception The exception that will be launched.
     */
    public double classifyInstance(Instance instance) throws Exception {
        return classifier.classifyInstance(instance);
    }

    /**
     * Returns the probability that has the instance to belong to each class.
     * every instance of belonging to every class that the dataset contains.
     *
     * @param instance The instance to test.
     * @return The probabilities for each class
     */
    @Override
    public double[] distributionForInstance(Instance instance) {

        try {
            return classifier.distributionForInstance(instance);
        } catch (Exception e) {
            Logger.getLogger(WekaClassifier.class.getName()).log(Level.SEVERE, null, e);
        }
        return null;
    }

    /**
     * Evaluates the classifier using the test dataset and stores the evaluation.
     *
     * @param instances The instances to test
     * @return The evaluation
     */
    @Override
    public AbstractEvaluation testModel(IDataset instances) {

        try {

            // test the current classifier with the test set
            Evaluation evaluator = new Evaluation(new Instances(instances.getDataset(), 0));

            evaluator.evaluateModel(classifier, instances.getDataset());

            SingleLabelEvaluation sleval = new SingleLabelEvaluation();

            sleval.setEvaluation(evaluator);

            return sleval;

        } catch (Exception e) {
            Logger.getLogger(WekaClassifier.class.getName()).log(Level.SEVERE, null, e);
        }

        return null;
    }

    /**
     * The simple name of the class.
     *
     * @return the string
     */
    @Override
    public String toString() {
        return classifier.getClass().getSimpleName();
    }

    /**
     * Set the classifier to use.
     *
     * @param classifier The weka classifier.
     */
    public void setClassifier(Classifier classifier) {
        try {
            this.classifier = weka.classifiers.AbstractClassifier.makeCopy(classifier);
        } catch (Exception e) {
            Logger.getLogger(WekaClassifier.class.getName()).log(Level.SEVERE, null, e);
        }
    }

    /**
     *
     * @param configuration The configuration object for WekaClassifier.
     *The XML labels supported are:
     * <ul>
     * <li>
     * <b>classifier type= class</b>
     * <p>
     * Package: weka.classifiers</p>
     * <p>
     * Class: All</p>
     * </li>
     * </ul>
     */
    @Override
    public void configure(Configuration configuration) {

        String classifierError = "classifier type= ";
        try {

            // classifier classname
            String classifierClassname = configuration.getString("classifier[@type]");
            classifierError += classifierClassname;
            // classifier class
            Class<? extends Classifier> classifierClass = (Class<? extends Classifier>) Class
                    .forName(classifierClassname);
            // classifier instance
            Classifier classifierTemp = classifierClass.newInstance();
            // Configure classifier (if necessary)
            if (classifierTemp instanceof IConfigure) {
                ((IConfigure) classifierTemp).configure(configuration.subset("classifier"));
            }
            // Add this classifier
            setClassifier(classifierTemp);
        } catch (ClassNotFoundException e) {
            throw new ConfigurationRuntimeException("\nIllegal classifier classname: " + classifierError, e);
        } catch (InstantiationException e) {
            throw new ConfigurationRuntimeException("\nIllegal classifier classname: " + classifierError, e);
        } catch (IllegalAccessException e) {
            throw new ConfigurationRuntimeException("\nIllegal classifier classname: " + classifierError, e);
        }
    }
}