Java tutorial
package net.sf.dsp4j.octave.packages.signal_1_0_11; import java.util.Arrays; import org.apache.commons.math3.transform.FastFourierTransformer; import org.apache.commons.math3.complex.Complex; import org.apache.commons.math3.transform.DftNormalization; import org.apache.commons.math3.transform.TransformType; /* ## Copyright (C) 1994, 1995, 1996, 1997, 1999, 2000, 2002, 2005, 2006, ## 2007, 2009 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{h}, @var{w}] =} freqz (@var{b}, @var{a}, @var{n}, "whole") ## Return the complex frequency response @var{h} of the rational IIR filter ## whose numerator and denominator coefficients are @var{b} and @var{a}, ## respectively. The response is evaluated at @var{n} angular frequencies ## between 0 and ## @ifnottex ## 2*pi. ## @end ifnottex ## @tex ## $2\pi$. ## @end tex ## ## @noindent ## The output value @var{w} is a vector of the frequencies. ## ## If the fourth argument is omitted, the response is evaluated at ## frequencies between 0 and ## @ifnottex ## pi. ## @end ifnottex ## @tex ## $\pi$. ## @end tex ## ## If @var{n} is omitted, a value of 512 is assumed. ## ## If @var{a} is omitted, the denominator is assumed to be 1 (this ## corresponds to a simple FIR filter). ## ## For fastest computation, @var{n} should factor into a small number of ## small primes. ## ## @deftypefnx {Function File} {@var{h} =} freqz (@var{b}, @var{a}, @var{w}) ## Evaluate the response at the specific frequencies in the vector @var{w}. ## The values for @var{w} are measured in radians. ## ## @deftypefnx {Function File} {[@dots{}] =} freqz (@dots{}, @var{Fs}) ## Return frequencies in Hz instead of radians assuming a sampling rate ## @var{Fs}. If you are evaluating the response at specific frequencies ## @var{w}, those frequencies should be requested in Hz rather than radians. ## ## @deftypefnx {Function File} {} freqz (@dots{}) ## Plot the pass band, stop band and phase response of @var{h} rather ## than returning them. ## @end deftypefn ## Author: jwe ??? */ public class Freqz { Complex[] H; double[] w; public Freqz(double[] b, double[] a, int n) { FastFourierTransformer fft = new FastFourierTransformer(DftNormalization.STANDARD); Complex[] hb = fft.transform(Arrays.copyOf(b, 2 * n), TransformType.FORWARD); Complex[] ha = fft.transform(Arrays.copyOf(a, 2 * n), TransformType.FORWARD); H = new Complex[n]; w = new double[n]; for (int i = 0; i < H.length; i++) { H[i] = hb[i].divide(ha[i]); w[i] = Math.PI / n * i; } } public Freqz(double[] b, int n) { FastFourierTransformer fft = new FastFourierTransformer(DftNormalization.STANDARD); Complex[] hb = fft.transform(Arrays.copyOf(b, 2 * n), TransformType.FORWARD); H = Arrays.copyOfRange(hb, 0, n); w = new double[n]; for (int i = 0; i < H.length; i++) { w[i] = Math.PI / n * i; } } public Freqz(double[] b) { this(b, 512); } public Freqz(double[] b, double[] a) { this(b, a, 512); } } /* %!test # correct values and fft-polyval consistency %! # butterworth filter, order 2, cutoff pi/2 radians %! b = [0.292893218813452 0.585786437626905 0.292893218813452]; %! a = [1 0 0.171572875253810]; %! [h,w] = freqz(b,a,32); %! assert(h(1),1,10*eps); %! assert(abs(h(17)).^2,0.5,10*eps); %! assert(h,freqz(b,a,w),10*eps); # fft should be consistent with polyval %!test # whole-half consistency %! b = [1 1 1]/3; # 3-sample average %! [h,w] = freqz(b,1,32,'whole'); %! assert(h(2:16),conj(h(32:-1:18)),20*eps); %! [h2,w2] = freqz(b,1,16,'half'); %! assert(h(1:16),h2,20*eps); %! assert(w(1:16),w2,20*eps); %!test # Sampling frequency properly interpreted %! b = [1 1 1]/3; a = [1 0.2]; %! [h,f] = freqz(b,a,16,320); %! assert(f,[0:15]'*10,10*eps); %! [h2,f2] = freqz(b,a,[0:15]*10,320); %! assert(f2,[0:15]*10,10*eps); %! assert(h,h2.',20*eps); %! [h3,f3] = freqz(b,a,32,'whole',320); %! assert(f3,[0:31]'*10,10*eps); */