Java tutorial
/* * Copyright 2015 recommenders.net. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package net.recommenders.rival.evaluation.statistics; import java.util.HashSet; import java.util.Map; import java.util.Set; import org.apache.commons.math3.stat.descriptive.SummaryStatistics; /** * * Class used to compute the standard error of an algorithm with respect to the * baseline. * * @author <a href="http://github.com/abellogin">Alejandro</a> * * @param <V> generic type for users */ public class StandardError<V> { /** * Baseline metric for each dimension (users). */ private Map<V, Double> baselineMetricPerDimension; /** * Test metric for each dimension (users). */ private Map<V, Double> testMetricPerDimension; /** * Default constructor. * * @param theBaselineMetricPerDimension map for the baseline method, one * value for each user (dimension) * @param theTestMetricPerDimension map for the test method, one value for * each user (dimension) */ public StandardError(final Map<V, Double> theBaselineMetricPerDimension, final Map<V, Double> theTestMetricPerDimension) { this.baselineMetricPerDimension = theBaselineMetricPerDimension; this.testMetricPerDimension = theTestMetricPerDimension; } /** * Implements equation (8.13) from "Elementary Statistics: A Problem Solving * Approach 4th Edition", Andrew L. Comrey, Howard B. Lee * * @return the standard error as the ratio of the standard deviation divided * by the sqrt(number of users) of the distribution of difference scores. */ public double getStandardError() { Set<V> overlap = new HashSet<V>(baselineMetricPerDimension.keySet()); overlap.retainAll(testMetricPerDimension.keySet()); // paired or matched samples --> analyse distribution of difference scores SummaryStatistics differences = new SummaryStatistics(); for (V key : overlap) { double diff = baselineMetricPerDimension.get(key) - testMetricPerDimension.get(key); differences.addValue(diff); } double e = differences.getStandardDeviation() / Math.sqrt(differences.getN()); return e; } /** * {@inheritDoc} */ @Override public String toString() { return "StandardError"; } }