net.myrrix.online.factorizer.als.AlternatingLeastSquaresTest.java Source code

Java tutorial

Introduction

Here is the source code for net.myrrix.online.factorizer.als.AlternatingLeastSquaresTest.java

Source

/*
 * Copyright Myrrix Ltd
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package net.myrrix.online.factorizer.als;

import java.util.Arrays;
import java.util.concurrent.ExecutionException;

import org.apache.commons.math3.linear.RealMatrix;
import org.junit.After;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import net.myrrix.common.MyrrixTest;
import net.myrrix.common.collection.FastByIDFloatMap;
import net.myrrix.common.collection.FastByIDMap;
import net.myrrix.online.factorizer.MatrixFactorizer;
import net.myrrix.common.math.MatrixUtils;

public final class AlternatingLeastSquaresTest extends MyrrixTest {

    private static final Logger log = LoggerFactory.getLogger(AlternatingLeastSquaresTest.class);

    @Test
    public void testALS() throws Exception {
        RealMatrix product = buildTestXYTProduct(false);

        assertArrayEquals(new float[] { -0.030258f, 0.852781f, 1.004839f, 1.024087f, -0.036206f },
                product.getRow(0));
        assertArrayEquals(new float[] { 0.077046f, 0.751232f, 0.949796f, 0.910322f, 0.073047f }, product.getRow(1));
        assertArrayEquals(new float[] { 0.916777f, -0.196005f, 0.335926f, -0.163591f, 0.929028f },
                product.getRow(2));
        assertArrayEquals(new float[] { 0.987400f, 0.130943f, 0.772403f, 0.235522f, 0.998354f }, product.getRow(3));
        assertArrayEquals(new float[] { -0.028683f, 0.850540f, 1.003130f, 1.021514f, -0.034598f },
                product.getRow(4));
    }

    @Test
    public void testALSPredictingR() throws Exception {
        RealMatrix product = buildTestXYTProduct(true);

        assertArrayEquals(new float[] { 0.0678369f, 0.6574759f, 2.1020291f, 2.0976211f, 0.1115919f },
                product.getRow(0));
        assertArrayEquals(new float[] { -0.0176293f, 1.3062225f, 4.1365933f, 4.1739127f, -0.0380586f },
                product.getRow(1));
        assertArrayEquals(new float[] { 1.0854513f, -0.0344434f, 0.1725342f, -0.1564803f, 1.8502977f },
                product.getRow(2));
        assertArrayEquals(new float[] { 2.8377915f, 0.0528524f, 0.9041158f, 0.0474437f, 4.8365208f },
                product.getRow(3));
        assertArrayEquals(new float[] { -0.0057799f, 0.6608552f, 2.0936351f, 2.1115670f, -0.0139042f, },
                product.getRow(4));
    }

    @Override
    @After
    public void tearDown() throws Exception {
        System.clearProperty("model.reconstructRMatrix");
        super.tearDown();
    }

    private static RealMatrix buildTestXYTProduct(boolean reconstructR)
            throws ExecutionException, InterruptedException {
        System.setProperty("model.reconstructRMatrix", Boolean.toString(reconstructR));

        FastByIDMap<FastByIDFloatMap> byRow = new FastByIDMap<FastByIDFloatMap>();
        FastByIDMap<FastByIDFloatMap> byCol = new FastByIDMap<FastByIDFloatMap>();
        // Octave: R = [ 0 2 3 1 0 ; 0 0 4 5 0 ; 1 0 0 0 2 ; 3 0 1 0 5 ; 0 2 2 2 0 ]
        MatrixUtils.addTo(0, 1, 2.0f, byRow, byCol);
        MatrixUtils.addTo(0, 2, 3.0f, byRow, byCol);
        MatrixUtils.addTo(0, 3, 1.0f, byRow, byCol);
        MatrixUtils.addTo(1, 2, 4.0f, byRow, byCol);
        MatrixUtils.addTo(1, 3, 5.0f, byRow, byCol);
        MatrixUtils.addTo(2, 0, 1.0f, byRow, byCol);
        MatrixUtils.addTo(2, 4, 2.0f, byRow, byCol);
        MatrixUtils.addTo(3, 0, 3.0f, byRow, byCol);
        MatrixUtils.addTo(3, 2, 1.0f, byRow, byCol);
        MatrixUtils.addTo(3, 4, 5.0f, byRow, byCol);
        MatrixUtils.addTo(4, 1, 2.0f, byRow, byCol);
        MatrixUtils.addTo(4, 2, 2.0f, byRow, byCol);
        MatrixUtils.addTo(4, 3, 2.0f, byRow, byCol);

        // Octave: Y = [ 0.1 0.2 ; 0.2 0.5 ; 0.3 0.1 ; 0.2 0.2 ; 0.5 0.4 ];
        FastByIDMap<float[]> previousY = new FastByIDMap<float[]>();
        previousY.put(0L, new float[] { 0.1f, 0.2f });
        previousY.put(1L, new float[] { 0.2f, 0.5f });
        previousY.put(2L, new float[] { 0.3f, 0.1f });
        previousY.put(3L, new float[] { 0.2f, 0.2f });
        previousY.put(4L, new float[] { 0.5f, 0.4f });

        MatrixFactorizer als = new AlternatingLeastSquares(byRow, byCol, 2, 0.0001, 40);
        als.setPreviousY(previousY);
        als.call();

        RealMatrix product = MatrixUtils.multiplyXYT(als.getX(), als.getY());

        StringBuilder productString = new StringBuilder(100);
        for (int row = 0; row < product.getRowDimension(); row++) {
            productString.append('\n').append(Arrays.toString(doubleToFloatArray(product.getRow(row))));
        }
        log.info("{}", productString);

        return product;
    }

}