Java tutorial
/* * Copyright Myrrix Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package net.myrrix.online.eval; import java.io.File; import java.util.Map; import com.google.common.base.Preconditions; import com.google.common.collect.Multimap; import org.apache.mahout.cf.taste.common.NoSuchItemException; import org.apache.mahout.cf.taste.common.NoSuchUserException; import org.apache.mahout.cf.taste.common.TasteException; import org.apache.mahout.cf.taste.recommender.RecommendedItem; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import net.myrrix.common.LangUtils; import net.myrrix.common.MyrrixRecommender; import net.myrrix.common.stats.DoubleWeightedMean; import net.myrrix.online.RescorerProvider; /** * <p>An alternate evaluation which computes the average "error" in estimated strength score (see * {@link org.apache.mahout.cf.taste.recommender.Recommender#estimatePreference(long, long)}) for each test * datum. It simply reports the average -- a weighted average, weighted by the test datum's value -- of the * difference between 1.0 and the estimate. An estimate of 1.0 would be good, producing an error of 0.0. * We allow the difference to be negative.</p> * * <p>This class can be run as a Java program; the single argument is a directory containing test data. * The {@link EvaluationResult} is printed to standard out.</p> * * @author Sean Owen * @since 1.0 */ public final class EstimatedStrengthEvaluator extends AbstractEvaluator { private static final Logger log = LoggerFactory.getLogger(EstimatedStrengthEvaluator.class); @Override protected boolean isSplitTestByPrefValue() { return false; } @Override public EvaluationResult evaluate(MyrrixRecommender recommender, RescorerProvider provider, // ignored Multimap<Long, RecommendedItem> testData) throws TasteException { DoubleWeightedMean score = new DoubleWeightedMean(); int count = 0; for (Map.Entry<Long, RecommendedItem> entry : testData.entries()) { long userID = entry.getKey(); RecommendedItem itemPref = entry.getValue(); try { float estimate = recommender.estimatePreference(userID, itemPref.getItemID()); Preconditions.checkState(LangUtils.isFinite(estimate)); score.increment(1.0 - estimate, itemPref.getValue()); } catch (NoSuchItemException nsie) { // continue } catch (NoSuchUserException nsue) { // continue } if (++count % 100000 == 0) { log.info("Score: {}", score); } } log.info("Score: {}", score); return new EvaluationResultImpl(score.getResult()); } public static void main(String[] args) throws Exception { EvaluationResult result = new EstimatedStrengthEvaluator().evaluate(new File(args[0])); log.info(String.valueOf(result)); } }