Java tutorial
/* * EWMAClassificationPerformanceEvaluator.java * Copyright (C) 2007 University of Waikato, Hamilton, New Zealand * @author Albert Bifet (abifet at cs dot waikato dot ac dot nz) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ package moa.evaluation; import moa.core.Measurement; import moa.core.ObjectRepository; import moa.options.FloatOption; import moa.options.AbstractOptionHandler; import moa.tasks.TaskMonitor; import weka.core.Instance; import weka.core.Utils; /** * Classification evaluator that updates evaluation results using an Exponential Weighted Moving Average. * * @author Albert Bifet (abifet at cs dot waikato dot ac dot nz) * @version $Revision: 7 $ */ public class EWMAClassificationPerformanceEvaluator extends AbstractOptionHandler implements ClassificationPerformanceEvaluator { private static final long serialVersionUID = 1L; protected double TotalweightObserved; public FloatOption alphaOption = new FloatOption("alpha", 'a', "Fading factor or exponential smoothing factor", .01); protected Estimator weightCorrect; protected class Estimator { protected double alpha; protected double estimation; public Estimator(double a) { alpha = a; estimation = 0; } public void add(double value) { estimation += alpha * (value - estimation); } public double estimation() { return estimation; } } /* public void setalpha(double a) { this.alpha = a; reset(); }*/ @Override public void reset() { weightCorrect = new Estimator(this.alphaOption.getValue()); } @Override public void addResult(Instance inst, double[] classVotes) { double weight = inst.weight(); int trueClass = (int) inst.classValue(); if (weight > 0.0) { this.TotalweightObserved += weight; if (Utils.maxIndex(classVotes) == trueClass) { this.weightCorrect.add(1); } else { this.weightCorrect.add(0); } } } /*public void addClassificationAttempt(int trueClass, double[] classVotes, double weight) { if (weight > 0.0) { this.TotalweightObserved += weight; if (Utils.maxIndex(classVotes) == trueClass) { this.weightCorrect.add(1); } else this.weightCorrect.add(0); } }*/ @Override public Measurement[] getPerformanceMeasurements() { return new Measurement[] { new Measurement("classified instances", this.TotalweightObserved), new Measurement("classifications correct (percent)", getFractionCorrectlyClassified() * 100.0) }; } public double getTotalWeightObserved() { return this.TotalweightObserved; } public double getFractionCorrectlyClassified() { return this.weightCorrect.estimation(); } public double getFractionIncorrectlyClassified() { return 1.0 - getFractionCorrectlyClassified(); } @Override public void getDescription(StringBuilder sb, int indent) { Measurement.getMeasurementsDescription(getPerformanceMeasurements(), sb, indent); } @Override public void prepareForUseImpl(TaskMonitor monitor, ObjectRepository repository) { reset(); } }