Java tutorial
/* * BasicClassificationPerformanceEvaluator.java * Copyright (C) 2007 University of Waikato, Hamilton, New Zealand * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @author Albert Bifet (abifet at cs dot waikato dot ac dot nz) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ package moa.evaluation; import moa.AbstractMOAObject; import moa.core.Measurement; import weka.core.Utils; import weka.core.Instance; /** * Classification evaluator that performs basic incremental evaluation. * * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @author Albert Bifet (abifet at cs dot waikato dot ac dot nz) * @version $Revision: 7 $ */ public class BasicClassificationPerformanceEvaluator extends AbstractMOAObject implements ClassificationPerformanceEvaluator { private static final long serialVersionUID = 1L; protected double weightObserved; protected double weightCorrect; protected double[] columnKappa; protected double[] rowKappa; protected int numClasses; private double weightCorrectNoChangeClassifier; private int lastSeenClass; @Override public void reset() { reset(this.numClasses); } public void reset(int numClasses) { this.numClasses = numClasses; this.rowKappa = new double[numClasses]; this.columnKappa = new double[numClasses]; for (int i = 0; i < this.numClasses; i++) { this.rowKappa[i] = 0.0; this.columnKappa[i] = 0.0; } this.weightObserved = 0.0; this.weightCorrect = 0.0; this.weightCorrectNoChangeClassifier = 0.0; this.lastSeenClass = 0; } @Override public void addResult(Instance inst, double[] classVotes) { double weight = inst.weight(); int trueClass = (int) inst.classValue(); if (weight > 0.0) { if (this.weightObserved == 0) { reset(inst.dataset().numClasses()); } this.weightObserved += weight; int predictedClass = Utils.maxIndex(classVotes); if (predictedClass == trueClass) { this.weightCorrect += weight; } this.rowKappa[predictedClass] += weight; this.columnKappa[trueClass] += weight; } if (this.lastSeenClass == trueClass) { this.weightCorrectNoChangeClassifier += weight; } this.lastSeenClass = trueClass; } @Override public Measurement[] getPerformanceMeasurements() { return new Measurement[] { new Measurement("classified instances", getTotalWeightObserved()), new Measurement("classifications correct (percent)", getFractionCorrectlyClassified() * 100.0), new Measurement("Kappa Statistic (percent)", getKappaStatistic() * 100.0), new Measurement("Kappa Temporal Statistic (percent)", getKappaTemporalStatistic() * 100.0) }; } public double getTotalWeightObserved() { return this.weightObserved; } public double getFractionCorrectlyClassified() { return this.weightObserved > 0.0 ? this.weightCorrect / this.weightObserved : 0.0; } public double getFractionIncorrectlyClassified() { return 1.0 - getFractionCorrectlyClassified(); } public double getKappaStatistic() { if (this.weightObserved > 0.0) { double p0 = getFractionCorrectlyClassified(); double pc = 0.0; for (int i = 0; i < this.numClasses; i++) { pc += (this.rowKappa[i] / this.weightObserved) * (this.columnKappa[i] / this.weightObserved); } return (p0 - pc) / (1.0 - pc); } else { return 0; } } public double getKappaTemporalStatistic() { if (this.weightObserved > 0.0) { double p0 = this.weightCorrect / this.weightObserved; double pc = this.weightCorrectNoChangeClassifier / this.weightObserved; return (p0 - pc) / (1.0 - pc); } else { return 0; } } @Override public void getDescription(StringBuilder sb, int indent) { Measurement.getMeasurementsDescription(getPerformanceMeasurements(), sb, indent); } }