Java tutorial
/* * OzaBag.java * Copyright (C) 2007 University of Waikato, Hamilton, New Zealand * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ package moa.classifiers.meta; import moa.classifiers.AbstractClassifier; import moa.classifiers.Classifier; import weka.core.Instance; import moa.core.DoubleVector; import moa.core.Measurement; import moa.core.MiscUtils; import moa.options.ClassOption; import moa.options.FlagOption; import moa.options.IntOption; /** * Incremental on-line bagging of Oza and Russell. * * <p>Oza and Russell developed online versions of bagging and boosting for * Data Streams. They show how the process of sampling bootstrap replicates * from training data can be simulated in a data stream context. They observe * that the probability that any individual example will be chosen for a * replicate tends to a Poisson(1) distribution.</p> * * <p>[OR] N. Oza and S. Russell. Online bagging and boosting. * In Arti?cial Intelligence and Statistics 2001, pages 105112. * Morgan Kaufmann, 2001.</p> * * <p>Parameters:</p> <ul> * <li>-l : Classi?er to train</li> * <li>-s : The number of models in the bag</li> </ul> * * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @version $Revision: 7 $ */ public class OzaBagLambda extends AbstractClassifier { @Override public String getPurposeString() { return "Incremental on-line bagging of Oza and Russell."; } private static final long serialVersionUID = 1L; public ClassOption baseLearnerOption = new ClassOption("baseLearner", 'l', "Classifier to train.", Classifier.class, "trees.HoeffdingTree"); public IntOption ensembleSizeOption = new IntOption("ensembleSize", 's', "The number of models in the bag.", 10, 1, Integer.MAX_VALUE); public IntOption lambdaOption = new IntOption("lambda", 'L', "lambda", 1, 1, 1000); public FlagOption debugOption = new FlagOption("debug", 'd', "debug"); protected Classifier[] ensemble; private boolean m_debug = false; @Override public void resetLearningImpl() { this.ensemble = new Classifier[this.ensembleSizeOption.getValue()]; Classifier baseLearner = (Classifier) getPreparedClassOption(this.baseLearnerOption); this.m_debug = this.debugOption.isSet(); baseLearner.resetLearning(); for (int i = 0; i < this.ensemble.length; i++) { this.ensemble[i] = baseLearner.copy(); } } @Override public void trainOnInstanceImpl(Instance inst) { for (int i = 0; i < this.ensemble.length; i++) { int k = MiscUtils.poisson(this.lambdaOption.getValue(), this.classifierRandom); if (!m_debug) { if (k > 0) { Instance weightedInst = (Instance) inst.copy(); weightedInst.setWeight(inst.weight() * k); this.ensemble[i].trainOnInstance(weightedInst); } } if (m_debug) { System.out.println(inst.weight() * k); } } } @Override public double[] getVotesForInstance(Instance inst) { DoubleVector combinedVote = new DoubleVector(); for (int i = 0; i < this.ensemble.length; i++) { DoubleVector vote = new DoubleVector(this.ensemble[i].getVotesForInstance(inst)); if (vote.sumOfValues() > 0.0) { vote.normalize(); combinedVote.addValues(vote); } } return combinedVote.getArrayRef(); } @Override public boolean isRandomizable() { return true; } @Override public void getModelDescription(StringBuilder out, int indent) { // TODO Auto-generated method stub } @Override protected Measurement[] getModelMeasurementsImpl() { return new Measurement[] { new Measurement("ensemble size", this.ensemble != null ? this.ensemble.length : 0) }; } @Override public Classifier[] getSubClassifiers() { return this.ensemble.clone(); } }