Java tutorial
/* * MajorityClass.java * Copyright (C) 2007 University of Waikato, Hamilton, New Zealand * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ package moa.classifiers.functions; import moa.classifiers.AbstractClassifier; import moa.core.DoubleVector; import moa.core.Measurement; import moa.core.StringUtils; import weka.core.Instance; /** * Majority class learner. This is the simplest classifier. * * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @version $Revision: 7 $ */ public class MajorityClass extends AbstractClassifier { private static final long serialVersionUID = 1L; @Override public String getPurposeString() { return "Majority class classifier: always predicts the class that has been observed most frequently the in the training data."; } protected DoubleVector observedClassDistribution; @Override public void resetLearningImpl() { this.observedClassDistribution = new DoubleVector(); } @Override public void trainOnInstanceImpl(Instance inst) { this.observedClassDistribution.addToValue((int) inst.classValue(), inst.weight()); } public double[] getVotesForInstance(Instance i) { return this.observedClassDistribution.getArrayCopy(); } @Override protected Measurement[] getModelMeasurementsImpl() { return null; } @Override public void getModelDescription(StringBuilder out, int indent) { StringUtils.appendIndented(out, indent, "Predicted majority "); out.append(getClassNameString()); out.append(" = "); out.append(getClassLabelString(this.observedClassDistribution.maxIndex())); StringUtils.appendNewline(out); for (int i = 0; i < this.observedClassDistribution.numValues(); i++) { StringUtils.appendIndented(out, indent, "Observed weight of "); out.append(getClassLabelString(i)); out.append(": "); out.append(this.observedClassDistribution.getValue(i)); StringUtils.appendNewline(out); } } public boolean isRandomizable() { return false; } }