Java tutorial
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package meka.classifiers.multitarget; /** * BCC.java - The Bayesian Classifier Chains (BCC) method. * Multi-target version of BCC method (directly applicable) -- only the confidence information is different. * @see meka.classifiers.multilabel.BCC * @author Jesse Read * @version June 2012 */ import java.util.Arrays; import meka.classifiers.multilabel.ProblemTransformationMethod; import weka.core.Instance; import weka.classifiers.trees.J48; import weka.core.RevisionUtils; public class BCC extends meka.classifiers.multilabel.BCC implements MultiTargetClassifier { /** for serialization. */ private static final long serialVersionUID = 2395428645144026318L; /** * Description to display in the GUI. * * @return the description */ @Override public String globalInfo() { return "The Bayesian Classifier Chains (BCC) method.\n" + "Multi-target version of the BCC method (directly applicable)."; } public BCC() { // default classifier for GUI this.m_Classifier = new J48(); } @Override protected String defaultClassifierString() { // default classifier for CLI return "weka.classifiers.trees.J48"; } @Override public double[] distributionForInstance(Instance x) throws Exception { int L = x.classIndex(); double y_long[] = Arrays.copyOf(super.distributionForInstance(x), L * 2); Arrays.fill(y_long, L, y_long.length, 1.0); return y_long; } @Override public String getRevision() { return RevisionUtils.extract("$Revision: 9117 $"); } public static void main(String args[]) { ProblemTransformationMethod.evaluation(new meka.classifiers.multitarget.BCC(), args); } }