math2605.MatrixMethods.java Source code

Java tutorial

Introduction

Here is the source code for math2605.MatrixMethods.java

Source

/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package math2605;

import org.apache.commons.math.linear.AbstractRealMatrix;
import org.apache.commons.math.linear.Array2DRowRealMatrix;
import org.apache.commons.math.linear.RealMatrix;

/**
 *
 * @author anjali
 */

public class MatrixMethods {
    public RealMatrix m;

    public MatrixMethods(RealMatrix m) {
        this.m = m;
    }

    public RealMatrix inverseMatrix() {
        RealMatrix inverse = new Array2DRowRealMatrix(m.getRowDimension(), m.getColumnDimension());
        //RealMatrix inverse = new AbstractRealMatrix(m.getRowDimension(), m.getColumnDimension());
        double[][] r = invert(m.getData());
        int row = r[0].length;
        int col = r.length;
        for (int i = 0; i < row; i++) {
            for (int j = 0; j < col; j++) {
                inverse.setEntry(i, j, r[i][j]);
            }
        }
        return inverse;
    }

    public double determinant() {
        return determinant(m.getData(), m.getColumnDimension());
    }

    public double determinant(double A[][], int N) {
        double det = 0;
        if (N == 1) {
            det = A[0][0];
        } else if (N == 2) {
            det = A[0][0] * A[1][1] - A[1][0] * A[0][1];
        } else {
            det = 0;
            for (int j1 = 0; j1 < N; j1++) {
                double[][] m = new double[N - 1][];
                for (int k = 0; k < (N - 1); k++) {
                    m[k] = new double[N - 1];
                }
                for (int i = 1; i < N; i++) {
                    int j2 = 0;
                    for (int j = 0; j < N; j++) {
                        if (j == j1)
                            continue;
                        m[i - 1][j2] = A[i][j];
                        j2++;
                    }
                }
                det += Math.pow(-1.0, 1.0 + j1 + 1.0) * A[0][j1] * determinant(m, N - 1);
            }
        }
        return det;
    }

    public static double[][] invert(double a[][]) {
        int n = a.length;
        double x[][] = new double[n][n];
        double b[][] = new double[n][n];
        int index[] = new int[n];
        for (int i = 0; i < n; ++i)
            b[i][i] = 1;
        upperTriangular(a, index);
        for (int i = 0; i < n - 1; ++i) {
            for (int j = i + 1; j < n; ++j) {
                for (int k = 0; k < n; ++k) {
                    b[index[j]][k] -= a[index[j]][i] * b[index[i]][k];

                }
            }
        }

        for (int i = 0; i < n; ++i) {
            x[n - 1][i] = b[index[n - 1]][i] / a[index[n - 1]][n - 1];
            for (int j = n - 2; j >= 0; --j) {
                x[j][i] = b[index[j]][i];
                for (int k = j + 1; k < n; ++k) {
                    x[j][i] -= a[index[j]][k] * x[k][i];
                }
                x[j][i] /= a[index[j]][j];
            }
        }
        return x;
    }

    public static void upperTriangular(double a[][], int index[]) {
        int n = index.length;
        double c[] = new double[n];
        for (int i = 0; i < n; ++i)
            index[i] = i;
        for (int i = 0; i < n; ++i) {
            double c1 = 0;
            for (int j = 0; j < n; ++j) {
                double c0 = Math.abs(a[i][j]);
                if (c0 > c1)
                    c1 = c0;
            }
            c[i] = c1;
        }

        int k = 0;
        for (int j = 0; j < n - 1; ++j) {
            double pi1 = 0;
            for (int i = j; i < n; ++i) {
                double pi0 = Math.abs(a[index[i]][j]);
                pi0 /= c[index[i]];
                if (pi0 > pi1) {
                    pi1 = pi0;
                    k = i;
                }
            }

            // Interchange rows according to the pivoting order
            int itmp = index[j];
            index[j] = index[k];
            index[k] = itmp;
            for (int i = j + 1; i < n; ++i) {
                double pj = a[index[i]][j] / a[index[j]][j];
                a[index[i]][j] = pj;
                for (int l = j + 1; l < n; ++l) {
                    a[index[i]][l] -= pj * a[index[j]][l];
                }
            }
        }
    }

    public double trace() {
        double trace = 0;
        for (int i = 0; i < m.getRowDimension(); i++) {
            for (int j = 0; j < m.getColumnDimension(); j++) {
                if (j == i) {
                    trace += m.getEntry(i, j);
                }
            }
        }
        return trace;
    }

}