Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package logic; import java.io.Serializable; import java.math.BigInteger; import java.util.ArrayList; import org.apache.commons.math3.analysis.UnivariateFunction; import org.apache.commons.math3.analysis.interpolation.UnivariateInterpolator; import org.apache.commons.math3.analysis.polynomials.PolynomialFunctionNewtonForm; import org.apache.commons.math3.exception.DimensionMismatchException; import org.apache.commons.math3.exception.MathIllegalArgumentException; import org.apache.commons.math3.exception.NonMonotonicSequenceException; import org.apache.commons.math3.exception.NumberIsTooSmallException; import utility.Node; /** * Implements the <a href=" * http://mathworld.wolfram.com/NewtonsDividedDifferenceInterpolationFormula.html"> * Divided Difference Algorithm</a> for interpolation of real univariate * functions. For reference, see <b>Introduction to Numerical Analysis</b>, * ISBN 038795452X, chapter 2. * <p> * The actual code of Neville's evaluation is in PolynomialFunctionLagrangeForm, * this class provides an easy-to-use interface to it.</p> * * @since 1.2 * * Note the original source code licensed to Apache, this is just a modification version for my system. */ public class ApacheInterpolation implements UnivariateInterpolator, Serializable { /** serializable version identifier */ private static final long serialVersionUID = 107049519551235069L; /** * Compute an interpolating function for the dataset. * * @param x Interpolating points array. * @param y Interpolating values array. * @return a function which interpolates the dataset. * @throws DimensionMismatchException if the array lengths are different. * @throws NumberIsTooSmallException if the number of points is less than 2. * @throws NonMonotonicSequenceException if {@code x} is not sorted in * strictly increasing order. */ public ApachePolyNewtonForm interpolate(ArrayList<Node> node_list) throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException { /** * a[] and c[] are defined in the general formula of Newton form: * p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... + * a[n](x-c[0])(x-c[1])...(x-c[n-1]) */ // No need to check, the condition is fulfilled by default // PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true); /** * When used for interpolation, the Newton form formula becomes * p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... + * f[x0,x1,...,x[n-1]](x-x0)(x-x1)...(x-x[n-2]) * Therefore, a[k] = f[x0,x1,...,xk], c[k] = x[k]. * <p> * Note x[], y[], a[] have the same length but c[]'s size is one less.</p> */ double[] x = new double[node_list.size()]; BigInteger[] y = new BigInteger[node_list.size()]; for (int i = 0; i < node_list.size(); i++) { x[i] = node_list.get(i).getX(); y[i] = node_list.get(i).getY(); } final double[] c = new double[x.length - 1]; System.arraycopy(x, 0, c, 0, c.length); final BigInteger[] a = computeDividedDifference(x, y); return new ApachePolyNewtonForm(a, c); } /** * Return a copy of the divided difference array. * <p> * The divided difference array is defined recursively by <pre> * f[x0] = f(x0) * f[x0,x1,...,xk] = (f[x1,...,xk] - f[x0,...,x[k-1]]) / (xk - x0) * </pre></p> * <p> * The computational complexity is O(N^2).</p> * * @param x Interpolating points array. * @param y Interpolating values array. * @return a fresh copy of the divided difference array. * @throws DimensionMismatchException if the array lengths are different. * @throws NumberIsTooSmallException if the number of points is less than 2. * @throws NonMonotonicSequenceException * if {@code x} is not sorted in strictly increasing order. */ protected static BigInteger[] computeDividedDifference(final double x[], final BigInteger y[]) throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException { // No need to check, the condition must be valid according to the paper // PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true); final BigInteger[] divdiff = y.clone(); // initialization final int n = x.length; final BigInteger[] a = new BigInteger[n]; a[0] = divdiff[0]; for (int i = 1; i < n; i++) { for (int j = 0; j < n - i; j++) { final BigInteger denominator = BigInteger.valueOf((long) (x[j + i] - x[j])); divdiff[j] = (divdiff[j + 1].subtract(divdiff[j])).divide(denominator); } a[i] = divdiff[0]; } return a; } @Override public UnivariateFunction interpolate(double[] arg0, double[] arg1) throws MathIllegalArgumentException, DimensionMismatchException { // TODO Auto-generated method stub return null; } }