Java tutorial
/* * The MIT License (MIT) * * Copyright (c) 2011-2015 Broad Institute, Aiden Lab * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ package juicebox.matrix; import org.apache.commons.math.stat.StatUtils; import org.broad.igv.util.collections.DoubleArrayList; import java.util.Arrays; import java.util.HashSet; import java.util.Set; /** * @author jrobinso * Date: 2/28/14 * Time: 5:49 PM */ public class SymmetricMatrix implements BasicMatrix { private final int dim; private final float[] data; private final Set<Integer> nullColumns; private float lowerValue = Float.NaN; private float upperValue = Float.NaN; public SymmetricMatrix(int dim) { this.dim = dim; int size = (dim * dim - dim) / 2 + dim; data = new float[size]; nullColumns = new HashSet<Integer>(); } public void nullColumn(int i) { nullColumns.add(i); } public Set<Integer> getNullColumns() { return nullColumns; } public void fill(float value) { Arrays.fill(data, value); } public void setEntry(int i, int j, float value) { data[getIdx(i, j)] = value; } private int getIdx(int i, int j) { return (i < j) ? i * dim - (i - 1) * i / 2 + j - i : j * dim - (j - 1) * j / 2 + i - j; } public float getColumnMean(int j) { float sum = 0; int count = 0; for (int i = 0; i < dim; i++) { float value = getEntry(i, j); if (!Float.isNaN(value)) { sum += value; count++; } } return count == 0 ? Float.NaN : sum / count; } public float getRowMean(int i) { float sum = 0; int count = 0; for (int j = 0; j < dim; j++) { float value = getEntry(i, j); if (!Float.isNaN(value)) { sum += value; count++; } } return count == 0 ? Float.NaN : sum / count; } @Override public float getEntry(int i, int j) { int idx = getIdx(i, j); return idx < data.length ? data[idx] : Float.NaN; } @Override public int getRowDimension() { return dim; } @Override public int getColumnDimension() { return dim; } @Override public float getLowerValue() { if (Float.isNaN(lowerValue)) { computePercentiles(); } return lowerValue; } @Override public float getUpperValue() { if (Float.isNaN(upperValue)) { computePercentiles(); } return upperValue; } private void computePercentiles() { // Statistics, other attributes DoubleArrayList flattenedDataList = new DoubleArrayList(data.length); for (float value : data) { if (!Float.isNaN(value) && value != 1) { flattenedDataList.add(value); } } // Stats double[] flattenedData = flattenedDataList.toArray(); lowerValue = (float) StatUtils.percentile(flattenedData, 5); upperValue = (float) StatUtils.percentile(flattenedData, 95); } }