Java tutorial
/* * Joinery -- Data frames for Java * Copyright (c) 2014, 2015 IBM Corp. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package joinery; import static org.junit.Assert.assertArrayEquals; import org.apache.commons.math3.exception.MathIllegalArgumentException; import org.junit.Before; import org.junit.Test; public class DataFrameAggregationTest { DataFrame<Object> df; @Before public void setUp() throws Exception { df = DataFrame.readCsv(ClassLoader.getSystemResourceAsStream("grouping.csv")); } @Test public void testSum() { assertArrayEquals(new Double[] { 280.0, 280.0 }, df.sum().toArray()); } @Test public void testMean() { assertArrayEquals(new Double[] { 40.0, 40.0 }, df.mean().toArray()); } @Test public void testStd() { assertArrayEquals(new double[] { 21.6024, 21.6024 }, df.stddev().toArray(double[].class), 0.0001); } @Test public void testVar() { assertArrayEquals(new double[] { 466.6666, 466.6666 }, df.var().toArray(double[].class), 0.0001); } @Test public void testSkew() { assertArrayEquals(new Double[] { 0.0, 0.0 }, df.skew().toArray()); } @Test public void testKurt() { assertArrayEquals(new Double[] { -1.2, -1.2 }, df.kurt().toArray()); } @Test public void testMin() { assertArrayEquals(new Double[] { 10.0, 10.0 }, df.min().toArray()); } @Test public void testMax() { assertArrayEquals(new Double[] { 70.0, 70.0 }, df.max().toArray()); } @Test public void testMedian() { assertArrayEquals(new Double[] { 40.0, 40.0 }, df.median().toArray()); } @Test public void testCumsum() { assertArrayEquals(new Double[] { 10.0, 30.0, 60.0, 100.0, 150.0, 210.0, 280.0, 10.0, 30.0, 60.0, 100.0, 150.0, 210.0, 280.0 }, df.cumsum().toArray()); } @Test public void testCumsumGrouped() { assertArrayEquals( new Object[] { "one", "one", "two", "two", "three", "three", "three", 10.0, 30.0, 30.0, 70.0, 50.0, 110.0, 180.0, 10.0, 30.0, 30.0, 70.0, 50.0, 110.0, 180.0 }, df.groupBy("b").cumsum().toArray()); } @Test public void testCumprod() { assertArrayEquals(new Double[] { 10.0, 200.0, 6000.0, 240000.0, 12000000.0, 720000000.0, 50400000000.0, 10.0, 200.0, 6000.0, 240000.0, 12000000.0, 720000000.0, 50400000000.0 }, df.cumprod().toArray()); } @Test public void testCummin() { df.set(4, 2, 1); assertArrayEquals( new Double[] { 10.0, 10.0, 10.0, 10.0, 1.0, 1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0 }, df.cummin().toArray()); } @Test public void testCummax() { df.set(4, 2, 100); assertArrayEquals(new Double[] { 10.0, 20.0, 30.0, 40.0, 100.0, 100.0, 100.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0 }, df.cummax().toArray()); } @Test public void testPercentile() { assertArrayEquals(new Double[] { 60.0, 60.0 }, df.percentile(75).toArray()); } @Test(expected = MathIllegalArgumentException.class) public void testPercentileInvalid() { df.percentile(101); } @Test public void testDescribe() { assertArrayEquals( new double[] { 7.0, 40.0, 21.6024, 466.6667, 70.0, 10.0, 7.0, 40.0, 21.6024, 466.6667, 70.0, 10.0 }, df.describe().toArray(double[].class), 0.0001); } @Test public void testDescribeGrouped() { assertArrayEquals(new double[] { 2.00000000, 15.00000000, 7.07106781, 50.00000000, 20.00000000, 10.00000000, 2.00000000, 35.00000000, 7.07106781, 50.00000000, 40.00000000, 30.00000000, 3.00000000, 60.00000000, 10.00000000, 100.00000000, 70.00000000, 50.00000000, 2.00000000, 15.00000000, 7.07106781, 50.00000000, 20.00000000, 10.00000000, 2.00000000, 35.00000000, 7.07106781, 50.00000000, 40.00000000, 30.00000000, 3.00000000, 60.00000000, 10.00000000, 100.00000000, 70.00000000, 50.00000000 }, df.groupBy("b").describe().toArray(double[].class), 0.0001); } @Test public void testCov() { assertArrayEquals(new double[] { 466.66667, 466.66667, 466.66667, 466.66667 }, df.cov().toArray(double[].class), 0.0001); } @Test public void testStorelessStatisticWithNulls() { df.set(0, 2, null); df.set(1, 3, null); df.mean(); } @Test public void testStatisticWithNulls() { df.set(0, 2, null); df.set(1, 3, null); df.median(); } }