jeans.math.SingleStat.java Source code

Java tutorial

Introduction

Here is the source code for jeans.math.SingleStat.java

Source

/*************************************************************************
 * Clus - Software for Predictive Clustering                             *
 * Copyright (C) 2007                                                    *
 *    Katholieke Universiteit Leuven, Leuven, Belgium                    *
 *    Jozef Stefan Institute, Ljubljana, Slovenia                        *
 *                                                                       *
 * This program is free software: you can redistribute it and/or modify  *
 * it under the terms of the GNU General Public License as published by  *
 * the Free Software Foundation, either version 3 of the License, or     *
 * (at your option) any later version.                                   *
 *                                                                       *
 * This program is distributed in the hope that it will be useful,       *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 * GNU General Public License for more details.                          *
 *                                                                       *
 * You should have received a copy of the GNU General Public License     *
 * along with this program.  If not, see <http://www.gnu.org/licenses/>. *
 *                                                                       *
 * Contact information: <http://www.cs.kuleuven.be/~dtai/clus/>.         *
 *************************************************************************/

package jeans.math;

/*
import org.apache.commons.math.distribution.*;
import org.apache.commons.math.*;
*/

public class SingleStat {

    //   protected static DistributionFactory m_DistroFactory = DistributionFactory.newInstance();

    protected double m_Min = Double.POSITIVE_INFINITY;
    protected double m_Max = Double.NEGATIVE_INFINITY;
    protected double m_Sum, m_SumSQ;
    protected double m_Count;
    //   protected TDistribution m_Distribution;

    public SingleStat() {
        m_Min = Double.POSITIVE_INFINITY;
        m_Max = Double.NEGATIVE_INFINITY;
    }

    public void reset() {
        m_Sum = 0.0;
        m_SumSQ = 0.0;
        m_Count = 0.0;
        m_Min = Double.POSITIVE_INFINITY;
        m_Max = Double.NEGATIVE_INFINITY;
        //      m_Distribution = null;
    }

    public double getCount() {
        return m_Count;
    }

    public void addFloat(double value) {
        m_Sum += value;
        m_SumSQ += value * value;
        m_Count += 1.0;
        if (value < m_Min)
            m_Min = value;
        if (value > m_Max)
            m_Max = value;
    }

    public double getRange() {
        return Math.abs(getMax() - getMin());
    }

    public void addMean(SingleStat other) {
        addFloat(other.getMean());
    }

    public double getMin() {
        return m_Min;
    }

    public double getMax() {
        return m_Max;
    }

    public double getVariance() {
        return (m_SumSQ - m_Sum * m_Sum / m_Count) / m_Count;
    }

    public double getStdDev() {
        return Math.sqrt(getVariance() * m_Count / (m_Count - 1));
    }

    public double getStdDefOfMean() {
        return getStdDev() / Math.sqrt(m_Count);
    }

    public double getMean() {
        return m_Sum / m_Count;
    }

    public String toString() {
        return "" + getMean() + " (" + getStdDev() + ") " + getMin() + "/" + getMax();
    }
    /*
       public double getConfIntOfMean(double level) {
          double probability = 0.5 + level/2; // 1.0 - (1.0 - level)/2;
          if (m_Distribution == null) {
     m_Distribution = m_DistroFactory.createTDistribution(getCount()-1);
          }
          try {
     double t_value = m_Distribution.inverseCumulativeProbability(probability);
     return getStdDefOfMean() * t_value;
          } catch (MathException e) {
     System.err.println("Math error: "+e.getMessage());
     return 0.0;
          }
       }
    */
}