java.math.Primality.java Source code

Java tutorial

Introduction

Here is the source code for java.math.Primality.java

Source

/*
 *  Licensed to the Apache Software Foundation (ASF) under one or more
 *  contributor license agreements.  See the NOTICE file distributed with
 *  this work for additional information regarding copyright ownership.
 *  The ASF licenses this file to You under the Apache License, Version 2.0
 *  (the "License"); you may not use this file except in compliance with
 *  the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

package java.math;

import java.util.Arrays;

import com.google.gwt.user.client.Random;

/**
 * Provides primality probabilistic methods.
 */
class Primality {

    /** Just to denote that this class can't be instantiated. */
    private Primality() {
    }

    /** All prime numbers with bit length lesser than 10 bits. */
    private static final int primes[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
            71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179,
            181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293,
            307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431,
            433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569,
            571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,
            701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839,
            853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991,
            997, 1009, 1013, 1019, 1021 };

    /** All {@code BigInteger} prime numbers with bit length lesser than 8 bits. */
    private static final BigInteger BIprimes[] = new BigInteger[primes.length];

    /**
     * It encodes how many iterations of Miller-Rabin test are need to get an
     * error bound not greater than {@code 2<sup>(-100)</sup>}. For example:
     * for a {@code 1000}-bit number we need {@code 4} iterations, since
     * {@code BITS[3] < 1000 <= BITS[4]}.
     */
    private static final int[] BITS = { 0, 0, 1854, 1233, 927, 747, 627, 543, 480, 431, 393, 361, 335, 314, 295,
            279, 265, 253, 242, 232, 223, 216, 181, 169, 158, 150, 145, 140, 136, 132, 127, 123, 119, 114, 110, 105,
            101, 96, 92, 87, 83, 78, 73, 69, 64, 59, 54, 49, 44, 38, 32, 26, 1 };

    /**
     * It encodes how many i-bit primes there are in the table for
     * {@code i=2,...,10}. For example {@code offsetPrimes[6]} says that from
     * index {@code 11} exists {@code 7} consecutive {@code 6}-bit prime
     * numbers in the array.
     */
    private static final int[][] offsetPrimes = { null, null, { 0, 2 }, { 2, 2 }, { 4, 2 }, { 6, 5 }, { 11, 7 },
            { 18, 13 }, { 31, 23 }, { 54, 43 }, { 97, 75 } };

    static {// To initialize the dual table of BigInteger primes
        for (int i = 0; i < primes.length; i++) {
            BIprimes[i] = BigInteger.valueOf(primes[i]);
        }
    }

    /**
     * It uses the sieve of Eratosthenes to discard several composite numbers in
     * some appropriate range (at the moment {@code [this, this + 1024]}). After
     * this process it applies the Miller-Rabin test to the numbers that were
     * not discarded in the sieve.
     * 
     * @see BigInteger#nextProbablePrime()
     * @see #millerRabin(BigInteger, int)
     */
    static BigInteger nextProbablePrime(BigInteger n) {
        // PRE: n >= 0
        int i, j;
        int certainty;
        int gapSize = 1024; // for searching of the next probable prime number
        int modules[] = new int[primes.length];
        boolean isDivisible[] = new boolean[gapSize];
        BigInteger startPoint;
        BigInteger probPrime;
        // If n < "last prime of table" searches next prime in the table
        if ((n.numberLength == 1) && (n.digits[0] >= 0) && (n.digits[0] < primes[primes.length - 1])) {
            for (i = 0; n.digits[0] >= primes[i]; i++) {
                ;
            }
            return BIprimes[i];
        }
        /*
         * Creates a "N" enough big to hold the next probable prime Note that: N <
         * "next prime" < 2*N
         */
        startPoint = new BigInteger(1, n.numberLength, new int[n.numberLength + 1]);
        System.arraycopy(n.digits, 0, startPoint.digits, 0, n.numberLength);
        // To fix N to the "next odd number"
        if (n.testBit(0)) {
            Elementary.inplaceAdd(startPoint, 2);
        } else {
            startPoint.digits[0] |= 1;
        }
        // To set the improved certainly of Miller-Rabin
        j = startPoint.bitLength();
        for (certainty = 2; j < BITS[certainty]; certainty++) {
            ;
        }
        // To calculate modules: N mod p1, N mod p2, ... for first primes.
        for (i = 0; i < primes.length; i++) {
            modules[i] = Division.remainder(startPoint, primes[i]) - gapSize;
        }
        while (true) {
            // At this point, all numbers in the gap are initialized as
            // probably primes
            Arrays.fill(isDivisible, false);
            // To discard multiples of first primes
            for (i = 0; i < primes.length; i++) {
                modules[i] = (modules[i] + gapSize) % primes[i];
                j = (modules[i] == 0) ? 0 : (primes[i] - modules[i]);
                for (; j < gapSize; j += primes[i]) {
                    isDivisible[j] = true;
                }
            }
            // To execute Miller-Rabin for non-divisible numbers by all first
            // primes
            for (j = 0; j < gapSize; j++) {
                if (!isDivisible[j]) {
                    probPrime = startPoint.copy();
                    Elementary.inplaceAdd(probPrime, j);

                    if (millerRabin(probPrime, certainty)) {
                        return probPrime;
                    }
                }
            }
            Elementary.inplaceAdd(startPoint, gapSize);
        }
    }

    /**
     * A random number is generated until a probable prime number is found.
     * 
     * @see BigInteger#BigInteger(int,int,Random)
     * @see BigInteger#probablePrime(int,Random)
     * @see #isProbablePrime(BigInteger, int)
     */
    static BigInteger consBigInteger(int bitLength, int certainty, Random rnd) {
        // PRE: bitLength >= 2;
        // For small numbers get a random prime from the prime table
        if (bitLength <= 10) {
            int rp[] = offsetPrimes[bitLength];
            return BIprimes[rp[0] + rnd.nextInt(rp[1])];
        }
        int shiftCount = (-bitLength) & 31;
        int last = (bitLength + 31) >> 5;
        BigInteger n = new BigInteger(1, last, new int[last]);

        last--;
        do {// To fill the array with random integers
            for (int i = 0; i < n.numberLength; i++) {
                n.digits[i] = rnd.nextInt();
            }
            // To fix to the correct bitLength
            n.digits[last] |= 0x80000000;
            n.digits[last] >>>= shiftCount;
            // To create an odd number
            n.digits[0] |= 1;
        } while (!isProbablePrime(n, certainty));
        return n;
    }

    /**
     * @see BigInteger#isProbablePrime(int)
     * @see #millerRabin(BigInteger, int)
     * @ar.org.fitc.ref Optimizations: "A. Menezes - Handbook of applied
     *                  Cryptography, Chapter 4".
     */
    static boolean isProbablePrime(BigInteger n, int certainty) {
        // PRE: n >= 0;
        if ((certainty <= 0) || ((n.numberLength == 1) && (n.digits[0] == 2))) {
            return true;
        }
        // To discard all even numbers
        if (!n.testBit(0)) {
            return false;
        }
        // To check if 'n' exists in the table (it fit in 10 bits)
        if ((n.numberLength == 1) && ((n.digits[0] & 0XFFFFFC00) == 0)) {
            return (Arrays.binarySearch(primes, n.digits[0]) >= 0);
        }
        // To check if 'n' is divisible by some prime of the table
        for (int i = 1; i < primes.length; i++) {
            if (Division.remainderArrayByInt(n.digits, n.numberLength, primes[i]) == 0) {
                return false;
            }
        }
        // To set the number of iterations necessary for Miller-Rabin test
        int i;
        int bitLength = n.bitLength();

        for (i = 2; bitLength < BITS[i]; i++) {
            ;
        }
        certainty = Math.min(i, 1 + ((certainty - 1) >> 1));

        return millerRabin(n, certainty);
    }

    /**
     * The Miller-Rabin primality test.
     * 
     * @param n the input number to be tested.
     * @param t the number of trials.
     * @return {@code false} if the number is definitely compose, otherwise
     *         {@code true} with probability {@code 1 - 4<sup>(-t)</sup>}.
     * @ar.org.fitc.ref "D. Knuth, The Art of Computer Programming Vo.2, Section
     *                  4.5.4., Algorithm P"
     */
    private static boolean millerRabin(BigInteger n, int t) {
        // PRE: n >= 0, t >= 0
        BigInteger x; // x := UNIFORM{2...n-1}
        BigInteger y; // y := x^(q * 2^j) mod n
        BigInteger n_minus_1 = n.subtract(BigInteger.ONE); // n-1
        int bitLength = n_minus_1.bitLength(); // ~ log2(n-1)
        // (q,k) such that: n-1 = q * 2^k and q is odd
        int k = n_minus_1.getLowestSetBit();
        BigInteger q = n_minus_1.shiftRight(k);

        for (int i = 0; i < t; i++) {
            // To generate a witness 'x', first it use the primes of table
            if (i < primes.length) {
                x = BIprimes[i];
            } else {/*
                     * It generates random witness only if it's necesssary. Note
                     * that all methods would call Miller-Rabin with t <= 50 so
                     * this part is only to do more robust the algorithm
                     */
                do {
                    x = new BigInteger(bitLength, (Random) null);
                } while ((x.compareTo(n) >= BigInteger.EQUALS) || (x.sign == 0) || x.isOne());
            }
            y = x.modPow(q, n);
            if (y.isOne() || y.equals(n_minus_1)) {
                continue;
            }
            for (int j = 1; j < k; j++) {
                if (y.equals(n_minus_1)) {
                    continue;
                }
                y = y.multiply(y).mod(n);
                if (y.isOne()) {
                    return false;
                }
            }
            if (!y.equals(n_minus_1)) {
                return false;
            }
        }
        return true;
    }

}