java.awt.image.ComponentColorModel.java Source code

Java tutorial

Introduction

Here is the source code for java.awt.image.ComponentColorModel.java

Source

/*
 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.awt.image;

import java.awt.color.ColorSpace;
import java.awt.color.ICC_ColorSpace;
import java.util.Arrays;

/**
 * A {@code ColorModel} class that works with pixel values that
 * represent color and alpha information as separate samples and that
 * store each sample in a separate data element.  This class can be
 * used with an arbitrary {@code ColorSpace}.  The number of
 * color samples in the pixel values must be same as the number of
 * color components in the {@code ColorSpace}. There may be a
 * single alpha sample.
 * <p>
 * For those methods that use
 * a primitive array pixel representation of type {@code transferType},
 * the array length is the same as the number of color and alpha samples.
 * Color samples are stored first in the array followed by the alpha
 * sample, if present.  The order of the color samples is specified
 * by the {@code ColorSpace}.  Typically, this order reflects the
 * name of the color space type. For example, for {@code TYPE_RGB},
 * index 0 corresponds to red, index 1 to green, and index 2 to blue.
 * <p>
 * The translation from pixel sample values to color/alpha components for
 * display or processing purposes is based on a one-to-one correspondence of
 * samples to components.
 * Depending on the transfer type used to create an instance of
 * {@code ComponentColorModel}, the pixel sample values
 * represented by that instance may be signed or unsigned and may
 * be of integral type or float or double (see below for details).
 * The translation from sample values to normalized color/alpha components
 * must follow certain rules.  For float and double samples, the translation
 * is an identity, i.e. normalized component values are equal to the
 * corresponding sample values.  For integral samples, the translation
 * should be only a simple scale and offset, where the scale and offset
 * constants may be different for each component.  The result of
 * applying the scale and offset constants is a set of color/alpha
 * component values, which are guaranteed to fall within a certain
 * range.  Typically, the range for a color component will be the range
 * defined by the {@code getMinValue} and {@code getMaxValue}
 * methods of the {@code ColorSpace} class.  The range for an
 * alpha component should be 0.0 to 1.0.
 * <p>
 * Instances of {@code ComponentColorModel} created with transfer types
 * {@code DataBuffer.TYPE_BYTE}, {@code DataBuffer.TYPE_USHORT},
 * and {@code DataBuffer.TYPE_INT} have pixel sample values which
 * are treated as unsigned integral values.
 * The number of bits in a color or alpha sample of a pixel value might not
 * be the same as the number of bits for the corresponding color or alpha
 * sample passed to the
 * {@code ComponentColorModel(ColorSpace, int[], boolean, boolean, int, int)}
 * constructor.  In
 * that case, this class assumes that the least significant n bits of a sample
 * value hold the component value, where n is the number of significant bits
 * for the component passed to the constructor.  It also assumes that
 * any higher-order bits in a sample value are zero.  Thus, sample values
 * range from 0 to 2<sup>n</sup> - 1.  This class maps these sample values
 * to normalized color component values such that 0 maps to the value
 * obtained from the {@code ColorSpace's getMinValue}
 * method for each component and 2<sup>n</sup> - 1 maps to the value
 * obtained from {@code getMaxValue}.  To create a
 * {@code ComponentColorModel} with a different color sample mapping
 * requires subclassing this class and overriding the
 * {@code getNormalizedComponents(Object, float[], int)} method.
 * The mapping for an alpha sample always maps 0 to 0.0 and
 * 2<sup>n</sup> - 1 to 1.0.
 * <p>
 * For instances with unsigned sample values,
 * the unnormalized color/alpha component representation is only
 * supported if two conditions hold.  First, sample value 0 must
 * map to normalized component value 0.0 and sample value 2<sup>n</sup> - 1
 * to 1.0.  Second the min/max range of all color components of the
 * {@code ColorSpace} must be 0.0 to 1.0.  In this case, the
 * component representation is the n least
 * significant bits of the corresponding sample.  Thus each component is
 * an unsigned integral value between 0 and 2<sup>n</sup> - 1, where
 * n is the number of significant bits for a particular component.
 * If these conditions are not met, any method taking an unnormalized
 * component argument will throw an {@code IllegalArgumentException}.
 * <p>
 * Instances of {@code ComponentColorModel} created with transfer types
 * {@code DataBuffer.TYPE_SHORT}, {@code DataBuffer.TYPE_FLOAT}, and
 * {@code DataBuffer.TYPE_DOUBLE} have pixel sample values which
 * are treated as signed short, float, or double values.
 * Such instances do not support the unnormalized color/alpha component
 * representation, so any methods taking such a representation as an argument
 * will throw an {@code IllegalArgumentException} when called on one
 * of these instances.  The normalized component values of instances
 * of this class have a range which depends on the transfer
 * type as follows: for float samples, the full range of the float data
 * type; for double samples, the full range of the float data type
 * (resulting from casting double to float); for short samples,
 * from approximately -maxVal to +maxVal, where maxVal is the per
 * component maximum value for the {@code ColorSpace}
 * (-32767 maps to -maxVal, 0 maps to 0.0, and 32767 maps
 * to +maxVal).  A subclass may override the scaling for short sample
 * values to normalized component values by overriding the
 * {@code getNormalizedComponents(Object, float[], int)} method.
 * For float and double samples, the normalized component values are
 * taken to be equal to the corresponding sample values, and subclasses
 * should not attempt to add any non-identity scaling for these transfer
 * types.
 * <p>
 * Instances of {@code ComponentColorModel} created with transfer types
 * {@code DataBuffer.TYPE_SHORT}, {@code DataBuffer.TYPE_FLOAT}, and
 * {@code DataBuffer.TYPE_DOUBLE}
 * use all the bits of all sample values.  Thus all color/alpha components
 * have 16 bits when using {@code DataBuffer.TYPE_SHORT}, 32 bits when
 * using {@code DataBuffer.TYPE_FLOAT}, and 64 bits when using
 * {@code DataBuffer.TYPE_DOUBLE}.  When the
 * {@code ComponentColorModel(ColorSpace, int[], boolean, boolean, int, int)}
 * form of constructor is used with one of these transfer types, the
 * bits array argument is ignored.
 * <p>
 * It is possible to have color/alpha sample values
 * which cannot be reasonably interpreted as component values for rendering.
 * This can happen when {@code ComponentColorModel} is subclassed to
 * override the mapping of unsigned sample values to normalized color
 * component values or when signed sample values outside a certain range
 * are used.  (As an example, specifying an alpha component as a signed
 * short value outside the range 0 to 32767, normalized range 0.0 to 1.0, can
 * lead to unexpected results.) It is the
 * responsibility of applications to appropriately scale pixel data before
 * rendering such that color components fall within the normalized range
 * of the {@code ColorSpace} (obtained using the {@code getMinValue}
 * and {@code getMaxValue} methods of the {@code ColorSpace} class)
 * and the alpha component is between 0.0 and 1.0.  If color or alpha
 * component values fall outside these ranges, rendering results are
 * indeterminate.
 * <p>
 * Methods that use a single int pixel representation throw
 * an {@code IllegalArgumentException}, unless the number of components
 * for the {@code ComponentColorModel} is one and the component
 * value is unsigned -- in other words,  a single color component using
 * a transfer type of {@code DataBuffer.TYPE_BYTE},
 * {@code DataBuffer.TYPE_USHORT}, or {@code DataBuffer.TYPE_INT}
 * and no alpha.
 * <p>
 * A {@code ComponentColorModel} can be used in conjunction with a
 * {@code ComponentSampleModel}, a {@code BandedSampleModel},
 * or a {@code PixelInterleavedSampleModel} to construct a
 * {@code BufferedImage}.
 *
 * @see ColorModel
 * @see ColorSpace
 * @see ComponentSampleModel
 * @see BandedSampleModel
 * @see PixelInterleavedSampleModel
 * @see BufferedImage
 *
 */
public class ComponentColorModel extends ColorModel {

    /**
     * {@code signed}  is {@code true} for {@code short},
     * {@code float}, and {@code double} transfer types; it
     * is {@code false} for {@code byte}, {@code ushort},
     * and {@code int} transfer types.
     */
    private boolean signed; // true for transfer types short, float, double
                            // false for byte, ushort, int
    private boolean is_sRGB_stdScale;
    private boolean is_LinearRGB_stdScale;
    private boolean is_LinearGray_stdScale;
    private boolean is_ICCGray_stdScale;
    private byte[] tosRGB8LUT;
    private byte[] fromsRGB8LUT8;
    private short[] fromsRGB8LUT16;
    private byte[] fromLinearGray16ToOtherGray8LUT;
    private short[] fromLinearGray16ToOtherGray16LUT;
    private boolean needScaleInit;
    private boolean noUnnorm;
    private boolean nonStdScale;
    private float[] min;
    private float[] diffMinMax;
    private float[] compOffset;
    private float[] compScale;
    private volatile int hashCode;

    /**
     * Constructs a {@code ComponentColorModel} from the specified
     * parameters. Color components will be in the specified
     * {@code ColorSpace}.  The supported transfer types are
     * {@code DataBuffer.TYPE_BYTE}, {@code DataBuffer.TYPE_USHORT},
     * {@code DataBuffer.TYPE_INT},
     * {@code DataBuffer.TYPE_SHORT}, {@code DataBuffer.TYPE_FLOAT},
     * and {@code DataBuffer.TYPE_DOUBLE}.
     * If not null, the {@code bits} array specifies the
     * number of significant bits per color and alpha component and its
     * length should be at least the number of components in the
     * {@code ColorSpace} if there is no alpha
     * information in the pixel values, or one more than this number if
     * there is alpha information.  When the {@code transferType} is
     * {@code DataBuffer.TYPE_SHORT}, {@code DataBuffer.TYPE_FLOAT},
     * or {@code DataBuffer.TYPE_DOUBLE} the {@code bits} array
     * argument is ignored.  {@code hasAlpha} indicates whether alpha
     * information is present.  If {@code hasAlpha} is true, then
     * the boolean {@code isAlphaPremultiplied}
     * specifies how to interpret color and alpha samples in pixel values.
     * If the boolean is true, color samples are assumed to have been
     * multiplied by the alpha sample. The {@code transparency}
     * specifies what alpha values can be represented by this color model.
     * The acceptable {@code transparency} values are
     * {@code OPAQUE}, {@code BITMASK} or {@code TRANSLUCENT}.
     * The {@code transferType} is the type of primitive array used
     * to represent pixel values.
     *
     * @param colorSpace       The {@code ColorSpace} associated
     *                         with this color model.
     * @param bits             The number of significant bits per component.
     *                         May be null, in which case all bits of all
     *                         component samples will be significant.
     *                         Ignored if transferType is one of
     *                         {@code DataBuffer.TYPE_SHORT},
     *                         {@code DataBuffer.TYPE_FLOAT}, or
     *                         {@code DataBuffer.TYPE_DOUBLE},
     *                         in which case all bits of all component
     *                         samples will be significant.
     * @param hasAlpha         If true, this color model supports alpha.
     * @param isAlphaPremultiplied If true, alpha is premultiplied.
     * @param transparency     Specifies what alpha values can be represented
     *                         by this color model.
     * @param transferType     Specifies the type of primitive array used to
     *                         represent pixel values.
     *
     * @throws IllegalArgumentException If the {@code bits} array
     *         argument is not null, its length is less than the number of
     *         color and alpha components, and transferType is one of
     *         {@code DataBuffer.TYPE_BYTE},
     *         {@code DataBuffer.TYPE_USHORT}, or
     *         {@code DataBuffer.TYPE_INT}.
     * @throws IllegalArgumentException If transferType is not one of
     *         {@code DataBuffer.TYPE_BYTE},
     *         {@code DataBuffer.TYPE_USHORT},
     *         {@code DataBuffer.TYPE_INT},
     *         {@code DataBuffer.TYPE_SHORT},
     *         {@code DataBuffer.TYPE_FLOAT}, or
     *         {@code DataBuffer.TYPE_DOUBLE}.
     *
     * @see ColorSpace
     * @see java.awt.Transparency
     */
    public ComponentColorModel(ColorSpace colorSpace, int[] bits, boolean hasAlpha, boolean isAlphaPremultiplied,
            int transparency, int transferType) {
        super(bitsHelper(transferType, colorSpace, hasAlpha),
                bitsArrayHelper(bits, transferType, colorSpace, hasAlpha), colorSpace, hasAlpha,
                isAlphaPremultiplied, transparency, transferType);
        switch (transferType) {
        case DataBuffer.TYPE_BYTE:
        case DataBuffer.TYPE_USHORT:
        case DataBuffer.TYPE_INT:
            signed = false;
            needScaleInit = true;
            break;
        case DataBuffer.TYPE_SHORT:
            signed = true;
            needScaleInit = true;
            break;
        case DataBuffer.TYPE_FLOAT:
        case DataBuffer.TYPE_DOUBLE:
            signed = true;
            needScaleInit = false;
            noUnnorm = true;
            nonStdScale = false;
            break;
        default:
            throw new IllegalArgumentException(
                    "This constructor is not " + "compatible with transferType " + transferType);
        }
        setupLUTs();
    }

    /**
     * Constructs a {@code ComponentColorModel} from the specified
     * parameters. Color components will be in the specified
     * {@code ColorSpace}.  The supported transfer types are
     * {@code DataBuffer.TYPE_BYTE}, {@code DataBuffer.TYPE_USHORT},
     * {@code DataBuffer.TYPE_INT},
     * {@code DataBuffer.TYPE_SHORT}, {@code DataBuffer.TYPE_FLOAT},
     * and {@code DataBuffer.TYPE_DOUBLE}.  The number of significant
     * bits per color and alpha component will be 8, 16, 32, 16, 32,  or 64,
     * respectively.  The number of color components will be the
     * number of components in the {@code ColorSpace}.  There will be
     * an alpha component if {@code hasAlpha} is {@code true}.
     * If {@code hasAlpha} is true, then
     * the boolean {@code isAlphaPremultiplied}
     * specifies how to interpret color and alpha samples in pixel values.
     * If the boolean is true, color samples are assumed to have been
     * multiplied by the alpha sample. The {@code transparency}
     * specifies what alpha values can be represented by this color model.
     * The acceptable {@code transparency} values are
     * {@code OPAQUE}, {@code BITMASK} or {@code TRANSLUCENT}.
     * The {@code transferType} is the type of primitive array used
     * to represent pixel values.
     *
     * @param colorSpace       The {@code ColorSpace} associated
     *                         with this color model.
     * @param hasAlpha         If true, this color model supports alpha.
     * @param isAlphaPremultiplied If true, alpha is premultiplied.
     * @param transparency     Specifies what alpha values can be represented
     *                         by this color model.
     * @param transferType     Specifies the type of primitive array used to
     *                         represent pixel values.
     *
     * @throws IllegalArgumentException If transferType is not one of
     *         {@code DataBuffer.TYPE_BYTE},
     *         {@code DataBuffer.TYPE_USHORT},
     *         {@code DataBuffer.TYPE_INT},
     *         {@code DataBuffer.TYPE_SHORT},
     *         {@code DataBuffer.TYPE_FLOAT}, or
     *         {@code DataBuffer.TYPE_DOUBLE}.
     *
     * @see ColorSpace
     * @see java.awt.Transparency
     * @since 1.4
     */
    public ComponentColorModel(ColorSpace colorSpace, boolean hasAlpha, boolean isAlphaPremultiplied,
            int transparency, int transferType) {
        this(colorSpace, null, hasAlpha, isAlphaPremultiplied, transparency, transferType);
    }

    private static int bitsHelper(int transferType, ColorSpace colorSpace, boolean hasAlpha) {
        int numBits = DataBuffer.getDataTypeSize(transferType);
        int numComponents = colorSpace.getNumComponents();
        if (hasAlpha) {
            ++numComponents;
        }
        return numBits * numComponents;
    }

    private static int[] bitsArrayHelper(int[] origBits, int transferType, ColorSpace colorSpace,
            boolean hasAlpha) {
        switch (transferType) {
        case DataBuffer.TYPE_BYTE:
        case DataBuffer.TYPE_USHORT:
        case DataBuffer.TYPE_INT:
            if (origBits != null) {
                return origBits;
            }
            break;
        default:
            break;
        }
        int numBits = DataBuffer.getDataTypeSize(transferType);
        int numComponents = colorSpace.getNumComponents();
        if (hasAlpha) {
            ++numComponents;
        }
        int[] bits = new int[numComponents];
        for (int i = 0; i < numComponents; i++) {
            bits[i] = numBits;
        }
        return bits;
    }

    private void setupLUTs() {
        // REMIND: there is potential to accelerate sRGB, LinearRGB,
        // LinearGray, ICCGray, and non-ICC Gray spaces with non-standard
        // scaling, if that becomes important
        //
        // NOTE: The is_xxx_stdScale and nonStdScale booleans are provisionally
        // set here when this method is called at construction time.  These
        // variables may be set again when initScale is called later.
        // When setupLUTs returns, nonStdScale is true if (the transferType
        // is not float or double) AND (some minimum ColorSpace component
        // value is not 0.0 OR some maximum ColorSpace component value
        // is not 1.0).  This is correct for the calls to
        // getNormalizedComponents(Object, float[], int) from initScale().
        // initScale() may change the value nonStdScale based on the
        // return value of getNormalizedComponents() - this will only
        // happen if getNormalizedComponents() has been overridden by a
        // subclass to make the mapping of min/max pixel sample values
        // something different from min/max color component values.
        if (is_sRGB) {
            is_sRGB_stdScale = true;
            nonStdScale = false;
        } else if (ColorModel.isLinearRGBspace(colorSpace)) {
            // Note that the built-in Linear RGB space has a normalized
            // range of 0.0 - 1.0 for each coordinate.  Usage of these
            // LUTs makes that assumption.
            is_LinearRGB_stdScale = true;
            nonStdScale = false;
            if (transferType == DataBuffer.TYPE_BYTE) {
                tosRGB8LUT = ColorModel.getLinearRGB8TosRGB8LUT();
                fromsRGB8LUT8 = ColorModel.getsRGB8ToLinearRGB8LUT();
            } else {
                tosRGB8LUT = ColorModel.getLinearRGB16TosRGB8LUT();
                fromsRGB8LUT16 = ColorModel.getsRGB8ToLinearRGB16LUT();
            }
        } else if ((colorSpaceType == ColorSpace.TYPE_GRAY) && (colorSpace instanceof ICC_ColorSpace)
                && (colorSpace.getMinValue(0) == 0.0f) && (colorSpace.getMaxValue(0) == 1.0f)) {
            // Note that a normalized range of 0.0 - 1.0 for the gray
            // component is required, because usage of these LUTs makes
            // that assumption.
            ICC_ColorSpace ics = (ICC_ColorSpace) colorSpace;
            is_ICCGray_stdScale = true;
            nonStdScale = false;
            fromsRGB8LUT16 = ColorModel.getsRGB8ToLinearRGB16LUT();
            if (ColorModel.isLinearGRAYspace(ics)) {
                is_LinearGray_stdScale = true;
                if (transferType == DataBuffer.TYPE_BYTE) {
                    tosRGB8LUT = ColorModel.getGray8TosRGB8LUT(ics);
                } else {
                    tosRGB8LUT = ColorModel.getGray16TosRGB8LUT(ics);
                }
            } else {
                if (transferType == DataBuffer.TYPE_BYTE) {
                    tosRGB8LUT = ColorModel.getGray8TosRGB8LUT(ics);
                    fromLinearGray16ToOtherGray8LUT = ColorModel.getLinearGray16ToOtherGray8LUT(ics);
                } else {
                    tosRGB8LUT = ColorModel.getGray16TosRGB8LUT(ics);
                    fromLinearGray16ToOtherGray16LUT = ColorModel.getLinearGray16ToOtherGray16LUT(ics);
                }
            }
        } else if (needScaleInit) {
            // if transferType is byte, ushort, int, or short and we
            // don't already know the ColorSpace has minVlaue == 0.0f and
            // maxValue == 1.0f for all components, we need to check that
            // now and setup the min[] and diffMinMax[] arrays if necessary.
            nonStdScale = false;
            for (int i = 0; i < numColorComponents; i++) {
                if ((colorSpace.getMinValue(i) != 0.0f) || (colorSpace.getMaxValue(i) != 1.0f)) {
                    nonStdScale = true;
                    break;
                }
            }
            if (nonStdScale) {
                min = new float[numColorComponents];
                diffMinMax = new float[numColorComponents];
                for (int i = 0; i < numColorComponents; i++) {
                    min[i] = colorSpace.getMinValue(i);
                    diffMinMax[i] = colorSpace.getMaxValue(i) - min[i];
                }
            }
        }
    }

    private void initScale() {
        // This method is called the first time any method which uses
        // pixel sample value to color component value scaling information
        // is called if the transferType supports non-standard scaling
        // as defined above (byte, ushort, int, and short), unless the
        // method is getNormalizedComponents(Object, float[], int) (that
        // method must be overridden to use non-standard scaling).  This
        // method also sets up the noUnnorm boolean variable for these
        // transferTypes.  After this method is called, the nonStdScale
        // variable will be true if getNormalizedComponents() maps a
        // sample value of 0 to anything other than 0.0f OR maps a
        // sample value of 2^^n - 1 (2^^15 - 1 for short transferType)
        // to anything other than 1.0f.  Note that this can be independent
        // of the colorSpace min/max component values, if the
        // getNormalizedComponents() method has been overridden for some
        // reason, e.g. to provide greater dynamic range in the sample
        // values than in the color component values.  Unfortunately,
        // this method can't be called at construction time, since a
        // subclass may still have uninitialized state that would cause
        // getNormalizedComponents() to return an incorrect result.
        needScaleInit = false; // only needs to called once
        if (nonStdScale || signed) {
            // The unnormalized form is only supported for unsigned
            // transferTypes and when the ColorSpace min/max values
            // are 0.0/1.0.  When this method is called nonStdScale is
            // true if the latter condition does not hold.  In addition,
            // the unnormalized form requires that the full range of
            // the pixel sample values map to the full 0.0 - 1.0 range
            // of color component values.  That condition is checked
            // later in this method.
            noUnnorm = true;
        } else {
            noUnnorm = false;
        }
        float[] lowVal, highVal;
        switch (transferType) {
        case DataBuffer.TYPE_BYTE: {
            byte[] bpixel = new byte[numComponents];
            for (int i = 0; i < numColorComponents; i++) {
                bpixel[i] = 0;
            }
            if (supportsAlpha) {
                bpixel[numColorComponents] = (byte) ((1 << nBits[numColorComponents]) - 1);
            }
            lowVal = getNormalizedComponents(bpixel, null, 0);
            for (int i = 0; i < numColorComponents; i++) {
                bpixel[i] = (byte) ((1 << nBits[i]) - 1);
            }
            highVal = getNormalizedComponents(bpixel, null, 0);
        }
            break;
        case DataBuffer.TYPE_USHORT: {
            short[] uspixel = new short[numComponents];
            for (int i = 0; i < numColorComponents; i++) {
                uspixel[i] = 0;
            }
            if (supportsAlpha) {
                uspixel[numColorComponents] = (short) ((1 << nBits[numColorComponents]) - 1);
            }
            lowVal = getNormalizedComponents(uspixel, null, 0);
            for (int i = 0; i < numColorComponents; i++) {
                uspixel[i] = (short) ((1 << nBits[i]) - 1);
            }
            highVal = getNormalizedComponents(uspixel, null, 0);
        }
            break;
        case DataBuffer.TYPE_INT: {
            int[] ipixel = new int[numComponents];
            for (int i = 0; i < numColorComponents; i++) {
                ipixel[i] = 0;
            }
            if (supportsAlpha) {
                ipixel[numColorComponents] = ((1 << nBits[numColorComponents]) - 1);
            }
            lowVal = getNormalizedComponents(ipixel, null, 0);
            for (int i = 0; i < numColorComponents; i++) {
                ipixel[i] = ((1 << nBits[i]) - 1);
            }
            highVal = getNormalizedComponents(ipixel, null, 0);
        }
            break;
        case DataBuffer.TYPE_SHORT: {
            short[] spixel = new short[numComponents];
            for (int i = 0; i < numColorComponents; i++) {
                spixel[i] = 0;
            }
            if (supportsAlpha) {
                spixel[numColorComponents] = 32767;
            }
            lowVal = getNormalizedComponents(spixel, null, 0);
            for (int i = 0; i < numColorComponents; i++) {
                spixel[i] = 32767;
            }
            highVal = getNormalizedComponents(spixel, null, 0);
        }
            break;
        default:
            lowVal = highVal = null; // to keep the compiler from complaining
            break;
        }
        nonStdScale = false;
        for (int i = 0; i < numColorComponents; i++) {
            if ((lowVal[i] != 0.0f) || (highVal[i] != 1.0f)) {
                nonStdScale = true;
                break;
            }
        }
        if (nonStdScale) {
            noUnnorm = true;
            is_sRGB_stdScale = false;
            is_LinearRGB_stdScale = false;
            is_LinearGray_stdScale = false;
            is_ICCGray_stdScale = false;
            compOffset = new float[numColorComponents];
            compScale = new float[numColorComponents];
            for (int i = 0; i < numColorComponents; i++) {
                compOffset[i] = lowVal[i];
                compScale[i] = 1.0f / (highVal[i] - lowVal[i]);
            }
        }
    }

    private int getRGBComponent(int pixel, int idx) {
        if (numComponents > 1) {
            throw new IllegalArgumentException("More than one component per pixel");
        }
        if (signed) {
            throw new IllegalArgumentException("Component value is signed");
        }
        if (needScaleInit) {
            initScale();
        }
        // Since there is only 1 component, there is no alpha

        // Normalize the pixel in order to convert it
        Object opixel = null;
        switch (transferType) {
        case DataBuffer.TYPE_BYTE: {
            byte[] bpixel = { (byte) pixel };
            opixel = bpixel;
        }
            break;
        case DataBuffer.TYPE_USHORT: {
            short[] spixel = { (short) pixel };
            opixel = spixel;
        }
            break;
        case DataBuffer.TYPE_INT: {
            int[] ipixel = { pixel };
            opixel = ipixel;
        }
            break;
        }
        float[] norm = getNormalizedComponents(opixel, null, 0);
        float[] rgb = colorSpace.toRGB(norm);

        return (int) (rgb[idx] * 255.0f + 0.5f);
    }

    /**
     * Returns the red color component for the specified pixel, scaled
     * from 0 to 255 in the default RGB ColorSpace, sRGB.  A color conversion
     * is done if necessary.  The pixel value is specified as an int.
     * The returned value will be a non pre-multiplied value.
     * If the alpha is premultiplied, this method divides
     * it out before returning the value (if the alpha value is 0,
     * the red value will be 0).
     *
     * @param pixel The pixel from which you want to get the red color component.
     *
     * @return The red color component for the specified pixel, as an int.
     *
     * @throws IllegalArgumentException If there is more than
     * one component in this {@code ColorModel}.
     * @throws IllegalArgumentException If the component value for this
     * {@code ColorModel} is signed
     */
    public int getRed(int pixel) {
        return getRGBComponent(pixel, 0);
    }

    /**
     * Returns the green color component for the specified pixel, scaled
     * from 0 to 255 in the default RGB ColorSpace, sRGB.  A color conversion
     * is done if necessary.  The pixel value is specified as an int.
     * The returned value will be a non
     * pre-multiplied value. If the alpha is premultiplied, this method
     * divides it out before returning the value (if the alpha value is 0,
     * the green value will be 0).
     *
     * @param pixel The pixel from which you want to get the green color component.
     *
     * @return The green color component for the specified pixel, as an int.
     *
     * @throws IllegalArgumentException If there is more than
     * one component in this {@code ColorModel}.
     * @throws IllegalArgumentException If the component value for this
     * {@code ColorModel} is signed
     */
    public int getGreen(int pixel) {
        return getRGBComponent(pixel, 1);
    }

    /**
     * Returns the blue color component for the specified pixel, scaled
     * from 0 to 255 in the default RGB ColorSpace, sRGB.  A color conversion
     * is done if necessary.  The pixel value is specified as an int.
     * The returned value will be a non
     * pre-multiplied value. If the alpha is premultiplied, this method
     * divides it out before returning the value (if the alpha value is 0,
     * the blue value will be 0).
     *
     * @param pixel The pixel from which you want to get the blue color component.
     *
     * @return The blue color component for the specified pixel, as an int.
     *
     * @throws IllegalArgumentException If there is more than
     * one component in this {@code ColorModel}.
     * @throws IllegalArgumentException If the component value for this
     * {@code ColorModel} is signed
     */
    public int getBlue(int pixel) {
        return getRGBComponent(pixel, 2);
    }

    /**
     * Returns the alpha component for the specified pixel, scaled
     * from 0 to 255.   The pixel value is specified as an int.
     *
     * @param pixel The pixel from which you want to get the alpha component.
     *
     * @return The alpha component for the specified pixel, as an int.
     *
     * @throws IllegalArgumentException If there is more than
     * one component in this {@code ColorModel}.
     * @throws IllegalArgumentException If the component value for this
     * {@code ColorModel} is signed
     */
    public int getAlpha(int pixel) {
        if (supportsAlpha == false) {
            return 255;
        }
        if (numComponents > 1) {
            throw new IllegalArgumentException("More than one component per pixel");
        }
        if (signed) {
            throw new IllegalArgumentException("Component value is signed");
        }

        return (int) ((((float) pixel) / ((1 << nBits[0]) - 1)) * 255.0f + 0.5f);
    }

    /**
     * Returns the color/alpha components of the pixel in the default
     * RGB color model format.  A color conversion is done if necessary.
     * The returned value will be in a non pre-multiplied format. If
     * the alpha is premultiplied, this method divides it out of the
     * color components (if the alpha value is 0, the color values will be 0).
     *
     * @param pixel The pixel from which you want to get the color/alpha components.
     *
     * @return The color/alpha components for the specified pixel, as an int.
     *
     * @throws IllegalArgumentException If there is more than
     * one component in this {@code ColorModel}.
     * @throws IllegalArgumentException If the component value for this
     * {@code ColorModel} is signed
     */
    public int getRGB(int pixel) {
        if (numComponents > 1) {
            throw new IllegalArgumentException("More than one component per pixel");
        }
        if (signed) {
            throw new IllegalArgumentException("Component value is signed");
        }

        return (getAlpha(pixel) << 24) | (getRed(pixel) << 16) | (getGreen(pixel) << 8) | (getBlue(pixel) << 0);
    }

    private int extractComponent(Object inData, int idx, int precision) {
        // Extract component idx from inData.  The precision argument
        // should be either 8 or 16.  If it's 8, this method will return
        // an 8-bit value.  If it's 16, this method will return a 16-bit
        // value for transferTypes other than TYPE_BYTE.  For TYPE_BYTE,
        // an 8-bit value will be returned.

        // This method maps the input value corresponding to a
        // normalized ColorSpace component value of 0.0 to 0, and the
        // input value corresponding to a normalized ColorSpace
        // component value of 1.0 to 2^n - 1 (where n is 8 or 16), so
        // it is appropriate only for ColorSpaces with min/max component
        // values of 0.0/1.0.  This will be true for sRGB, the built-in
        // Linear RGB and Linear Gray spaces, and any other ICC grayscale
        // spaces for which we have precomputed LUTs.

        boolean needAlpha = (supportsAlpha && isAlphaPremultiplied);
        int alp = 0;
        int comp;
        int mask = (1 << nBits[idx]) - 1;

        switch (transferType) {
        // Note: we do no clamping of the pixel data here - we
        // assume that the data is scaled properly
        case DataBuffer.TYPE_SHORT: {
            short[] sdata = (short[]) inData;
            float scalefactor = (float) ((1 << precision) - 1);
            if (needAlpha) {
                short s = sdata[numColorComponents];
                if (s != (short) 0) {
                    return (int) ((((float) sdata[idx]) / ((float) s)) * scalefactor + 0.5f);
                } else {
                    return 0;
                }
            } else {
                return (int) ((sdata[idx] / 32767.0f) * scalefactor + 0.5f);
            }
        }
        case DataBuffer.TYPE_FLOAT: {
            float[] fdata = (float[]) inData;
            float scalefactor = (float) ((1 << precision) - 1);
            if (needAlpha) {
                float f = fdata[numColorComponents];
                if (f != 0.0f) {
                    return (int) (((fdata[idx] / f) * scalefactor) + 0.5f);
                } else {
                    return 0;
                }
            } else {
                return (int) (fdata[idx] * scalefactor + 0.5f);
            }
        }
        case DataBuffer.TYPE_DOUBLE: {
            double[] ddata = (double[]) inData;
            double scalefactor = (double) ((1 << precision) - 1);
            if (needAlpha) {
                double d = ddata[numColorComponents];
                if (d != 0.0) {
                    return (int) (((ddata[idx] / d) * scalefactor) + 0.5);
                } else {
                    return 0;
                }
            } else {
                return (int) (ddata[idx] * scalefactor + 0.5);
            }
        }
        case DataBuffer.TYPE_BYTE:
            byte[] bdata = (byte[]) inData;
            comp = bdata[idx] & mask;
            precision = 8;
            if (needAlpha) {
                alp = bdata[numColorComponents] & mask;
            }
            break;
        case DataBuffer.TYPE_USHORT:
            short[] usdata = (short[]) inData;
            comp = usdata[idx] & mask;
            if (needAlpha) {
                alp = usdata[numColorComponents] & mask;
            }
            break;
        case DataBuffer.TYPE_INT:
            int[] idata = (int[]) inData;
            comp = idata[idx];
            if (needAlpha) {
                alp = idata[numColorComponents];
            }
            break;
        default:
            throw new UnsupportedOperationException(
                    "This method has not " + "been implemented for transferType " + transferType);
        }
        if (needAlpha) {
            if (alp != 0) {
                float scalefactor = (float) ((1 << precision) - 1);
                float fcomp = ((float) comp) / ((float) mask);
                float invalp = ((float) ((1 << nBits[numColorComponents]) - 1)) / ((float) alp);
                return (int) (fcomp * invalp * scalefactor + 0.5f);
            } else {
                return 0;
            }
        } else {
            if (nBits[idx] != precision) {
                float scalefactor = (float) ((1 << precision) - 1);
                float fcomp = ((float) comp) / ((float) mask);
                return (int) (fcomp * scalefactor + 0.5f);
            }
            return comp;
        }
    }

    private int getRGBComponent(Object inData, int idx) {
        if (needScaleInit) {
            initScale();
        }
        if (is_sRGB_stdScale) {
            return extractComponent(inData, idx, 8);
        } else if (is_LinearRGB_stdScale) {
            int lutidx = extractComponent(inData, idx, 16);
            return tosRGB8LUT[lutidx] & 0xff;
        } else if (is_ICCGray_stdScale) {
            int lutidx = extractComponent(inData, 0, 16);
            return tosRGB8LUT[lutidx] & 0xff;
        }

        // Not CS_sRGB, CS_LINEAR_RGB, or any TYPE_GRAY ICC_ColorSpace
        float[] norm = getNormalizedComponents(inData, null, 0);
        // Note that getNormalizedComponents returns non-premultiplied values
        float[] rgb = colorSpace.toRGB(norm);
        return (int) (rgb[idx] * 255.0f + 0.5f);
    }

    /**
     * Returns the red color component for the specified pixel, scaled
     * from 0 to 255 in the default RGB ColorSpace, sRGB.  A color conversion
     * is done if necessary.  The {@code pixel} value is specified by an array
     * of data elements of type {@code transferType} passed in as an object
     * reference. The returned value will be a non pre-multiplied value. If the
     * alpha is premultiplied, this method divides it out before returning
     * the value (if the alpha value is 0, the red value will be 0). Since
     * {@code ComponentColorModel} can be subclassed, subclasses
     * inherit the implementation of this method and if they don't override
     * it then they throw an exception if they use an unsupported
     * {@code transferType}.
     *
     * @param inData The pixel from which you want to get the red color component,
     * specified by an array of data elements of type {@code transferType}.
     *
     * @return The red color component for the specified pixel, as an int.
     *
     * @throws ClassCastException If {@code inData} is not a primitive array
     * of type {@code transferType}.
     * @throws ArrayIndexOutOfBoundsException if {@code inData} is not
     * large enough to hold a pixel value for this
     * {@code ColorModel}.
     * @throws UnsupportedOperationException If the transfer type of
     * this {@code ComponentColorModel}
     * is not one of the supported transfer types:
     * {@code DataBuffer.TYPE_BYTE}, {@code DataBuffer.TYPE_USHORT},
     * {@code DataBuffer.TYPE_INT}, {@code DataBuffer.TYPE_SHORT},
     * {@code DataBuffer.TYPE_FLOAT}, or {@code DataBuffer.TYPE_DOUBLE}.
     */
    public int getRed(Object inData) {
        return getRGBComponent(inData, 0);
    }

    /**
     * Returns the green color component for the specified pixel, scaled
     * from 0 to 255 in the default RGB {@code ColorSpace}, sRGB.
     * A color conversion is done if necessary.  The {@code pixel} value
     * is specified by an array of data elements of type {@code transferType}
     * passed in as an object reference. The returned value is a non pre-multiplied
     * value. If the alpha is premultiplied, this method divides it out before
     * returning the value (if the alpha value is 0, the green value will be 0).
     * Since {@code ComponentColorModel} can be subclassed,
     * subclasses inherit the implementation of this method and if they
     * don't override it then they throw an exception if they use an
     * unsupported {@code transferType}.
     *
     * @param inData The pixel from which you want to get the green color component,
     * specified by an array of data elements of type {@code transferType}.
     *
     * @return The green color component for the specified pixel, as an int.
     *
     * @throws ClassCastException If {@code inData} is not a primitive array
     * of type {@code transferType}.
     * @throws ArrayIndexOutOfBoundsException if {@code inData} is not
     * large enough to hold a pixel value for this
     * {@code ColorModel}.
     * @throws UnsupportedOperationException If the transfer type of
     * this {@code ComponentColorModel}
     * is not one of the supported transfer types:
     * {@code DataBuffer.TYPE_BYTE}, {@code DataBuffer.TYPE_USHORT},
     * {@code DataBuffer.TYPE_INT}, {@code DataBuffer.TYPE_SHORT},
     * {@code DataBuffer.TYPE_FLOAT}, or {@code DataBuffer.TYPE_DOUBLE}.
     */
    public int getGreen(Object inData) {
        return getRGBComponent(inData, 1);
    }

    /**
     * Returns the blue color component for the specified pixel, scaled
     * from 0 to 255 in the default RGB {@code ColorSpace}, sRGB.
     * A color conversion is done if necessary.  The {@code pixel} value is
     * specified by an array of data elements of type {@code transferType}
     * passed in as an object reference. The returned value is a non pre-multiplied
     * value. If the alpha is premultiplied, this method divides it out before
     * returning the value (if the alpha value is 0, the blue value will be 0).
     * Since {@code ComponentColorModel} can be subclassed,
     * subclasses inherit the implementation of this method and if they
     * don't override it then they throw an exception if they use an
     * unsupported {@code transferType}.
     *
     * @param inData The pixel from which you want to get the blue color component,
     * specified by an array of data elements of type {@code transferType}.
     *
     * @return The blue color component for the specified pixel, as an int.
     *
     * @throws ClassCastException If {@code inData} is not a primitive array
     * of type {@code transferType}.
     * @throws ArrayIndexOutOfBoundsException if {@code inData} is not
     * large enough to hold a pixel value for this
     * {@code ColorModel}.
     * @throws UnsupportedOperationException If the transfer type of
     * this {@code ComponentColorModel}
     * is not one of the supported transfer types:
     * {@code DataBuffer.TYPE_BYTE}, {@code DataBuffer.TYPE_USHORT},
     * {@code DataBuffer.TYPE_INT}, {@code DataBuffer.TYPE_SHORT},
     * {@code DataBuffer.TYPE_FLOAT}, or {@code DataBuffer.TYPE_DOUBLE}.
     */
    public int getBlue(Object inData) {
        return getRGBComponent(inData, 2);
    }

    /**
     * Returns the alpha component for the specified pixel, scaled from
     * 0 to 255.  The pixel value is specified by an array of data
     * elements of type {@code transferType} passed in as an
     * object reference.  Since {@code ComponentColorModel} can be
     * subclassed, subclasses inherit the
     * implementation of this method and if they don't override it then
     * they throw an exception if they use an unsupported
     * {@code transferType}.
     *
     * @param inData The pixel from which you want to get the alpha component,
     * specified by an array of data elements of type {@code transferType}.
     *
     * @return The alpha component for the specified pixel, as an int.
     *
     * @throws ClassCastException If {@code inData} is not a primitive array
     * of type {@code transferType}.
     * @throws ArrayIndexOutOfBoundsException if {@code inData} is not
     * large enough to hold a pixel value for this
     * {@code ColorModel}.
     * @throws UnsupportedOperationException If the transfer type of
     * this {@code ComponentColorModel}
     * is not one of the supported transfer types:
     * {@code DataBuffer.TYPE_BYTE}, {@code DataBuffer.TYPE_USHORT},
     * {@code DataBuffer.TYPE_INT}, {@code DataBuffer.TYPE_SHORT},
     * {@code DataBuffer.TYPE_FLOAT}, or {@code DataBuffer.TYPE_DOUBLE}.
     */
    public int getAlpha(Object inData) {
        if (supportsAlpha == false) {
            return 255;
        }

        int alpha = 0;
        int aIdx = numColorComponents;
        int mask = (1 << nBits[aIdx]) - 1;

        switch (transferType) {
        case DataBuffer.TYPE_SHORT:
            short[] sdata = (short[]) inData;
            alpha = (int) ((sdata[aIdx] / 32767.0f) * 255.0f + 0.5f);
            return alpha;
        case DataBuffer.TYPE_FLOAT:
            float[] fdata = (float[]) inData;
            alpha = (int) (fdata[aIdx] * 255.0f + 0.5f);
            return alpha;
        case DataBuffer.TYPE_DOUBLE:
            double[] ddata = (double[]) inData;
            alpha = (int) (ddata[aIdx] * 255.0 + 0.5);
            return alpha;
        case DataBuffer.TYPE_BYTE:
            byte[] bdata = (byte[]) inData;
            alpha = bdata[aIdx] & mask;
            break;
        case DataBuffer.TYPE_USHORT:
            short[] usdata = (short[]) inData;
            alpha = usdata[aIdx] & mask;
            break;
        case DataBuffer.TYPE_INT:
            int[] idata = (int[]) inData;
            alpha = idata[aIdx];
            break;
        default:
            throw new UnsupportedOperationException(
                    "This method has not " + "been implemented for transferType " + transferType);
        }

        if (nBits[aIdx] == 8) {
            return alpha;
        } else {
            return (int) ((((float) alpha) / ((float) ((1 << nBits[aIdx]) - 1))) * 255.0f + 0.5f);
        }
    }

    /**
     * Returns the color/alpha components for the specified pixel in the
     * default RGB color model format.  A color conversion is done if
     * necessary.  The pixel value is specified by an
     * array of data elements of type {@code transferType} passed
     * in as an object reference.
     * The returned value is in a non pre-multiplied format. If
     * the alpha is premultiplied, this method divides it out of the
     * color components (if the alpha value is 0, the color values will be 0).
     * Since {@code ComponentColorModel} can be subclassed,
     * subclasses inherit the implementation of this method and if they
     * don't override it then they throw an exception if they use an
     * unsupported {@code transferType}.
     *
     * @param inData The pixel from which you want to get the color/alpha components,
     * specified by an array of data elements of type {@code transferType}.
     *
     * @return The color/alpha components for the specified pixel, as an int.
     *
     * @throws ClassCastException If {@code inData} is not a primitive array
     * of type {@code transferType}.
     * @throws ArrayIndexOutOfBoundsException if {@code inData} is not
     * large enough to hold a pixel value for this
     * {@code ColorModel}.
     * @throws UnsupportedOperationException If the transfer type of
     * this {@code ComponentColorModel}
     * is not one of the supported transfer types:
     * {@code DataBuffer.TYPE_BYTE}, {@code DataBuffer.TYPE_USHORT},
     * {@code DataBuffer.TYPE_INT}, {@code DataBuffer.TYPE_SHORT},
     * {@code DataBuffer.TYPE_FLOAT}, or {@code DataBuffer.TYPE_DOUBLE}.
     * @see ColorModel#getRGBdefault
     */
    public int getRGB(Object inData) {
        if (needScaleInit) {
            initScale();
        }
        if (is_sRGB_stdScale || is_LinearRGB_stdScale) {
            return (getAlpha(inData) << 24) | (getRed(inData) << 16) | (getGreen(inData) << 8) | (getBlue(inData));
        } else if (colorSpaceType == ColorSpace.TYPE_GRAY) {
            int gray = getRed(inData); // Red sRGB component should equal
                                       // green and blue components
            return (getAlpha(inData) << 24) | (gray << 16) | (gray << 8) | gray;
        }
        float[] norm = getNormalizedComponents(inData, null, 0);
        // Note that getNormalizedComponents returns non-premult values
        float[] rgb = colorSpace.toRGB(norm);
        return (getAlpha(inData) << 24) | (((int) (rgb[0] * 255.0f + 0.5f)) << 16)
                | (((int) (rgb[1] * 255.0f + 0.5f)) << 8) | (((int) (rgb[2] * 255.0f + 0.5f)) << 0);
    }

    /**
     * Returns a data element array representation of a pixel in this
     * {@code ColorModel}, given an integer pixel representation
     * in the default RGB color model.
     * This array can then be passed to the {@code setDataElements}
     * method of a {@code WritableRaster} object.  If the
     * {@code pixel}
     * parameter is null, a new array is allocated.  Since
     * {@code ComponentColorModel} can be subclassed, subclasses
     * inherit the implementation of this method and if they don't
     * override it then
     * they throw an exception if they use an unsupported
     * {@code transferType}.
     *
     * @param rgb the integer representation of the pixel in the RGB
     *            color model
     * @param pixel the specified pixel
     * @return The data element array representation of a pixel
     * in this {@code ColorModel}.
     * @throws ClassCastException If {@code pixel} is not null and
     * is not a primitive array of type {@code transferType}.
     * @throws ArrayIndexOutOfBoundsException If {@code pixel} is
     * not large enough to hold a pixel value for this
     * {@code ColorModel}.
     * @throws UnsupportedOperationException If the transfer type of
     * this {@code ComponentColorModel}
     * is not one of the supported transfer types:
     * {@code DataBuffer.TYPE_BYTE}, {@code DataBuffer.TYPE_USHORT},
     * {@code DataBuffer.TYPE_INT}, {@code DataBuffer.TYPE_SHORT},
     * {@code DataBuffer.TYPE_FLOAT}, or {@code DataBuffer.TYPE_DOUBLE}.
     *
     * @see WritableRaster#setDataElements
     * @see SampleModel#setDataElements
     */
    public Object getDataElements(int rgb, Object pixel) {
        // REMIND: Use rendering hints?

        int red, grn, blu, alp;
        red = (rgb >> 16) & 0xff;
        grn = (rgb >> 8) & 0xff;
        blu = rgb & 0xff;

        if (needScaleInit) {
            initScale();
        }
        if (signed) {
            // Handle SHORT, FLOAT, & DOUBLE here

            switch (transferType) {
            case DataBuffer.TYPE_SHORT: {
                short[] sdata;
                if (pixel == null) {
                    sdata = new short[numComponents];
                } else {
                    sdata = (short[]) pixel;
                }
                float factor;
                if (is_sRGB_stdScale || is_LinearRGB_stdScale) {
                    factor = 32767.0f / 255.0f;
                    if (is_LinearRGB_stdScale) {
                        red = fromsRGB8LUT16[red] & 0xffff;
                        grn = fromsRGB8LUT16[grn] & 0xffff;
                        blu = fromsRGB8LUT16[blu] & 0xffff;
                        factor = 32767.0f / 65535.0f;
                    }
                    if (supportsAlpha) {
                        alp = (rgb >> 24) & 0xff;
                        sdata[3] = (short) (alp * (32767.0f / 255.0f) + 0.5f);
                        if (isAlphaPremultiplied) {
                            factor = alp * factor * (1.0f / 255.0f);
                        }
                    }
                    sdata[0] = (short) (red * factor + 0.5f);
                    sdata[1] = (short) (grn * factor + 0.5f);
                    sdata[2] = (short) (blu * factor + 0.5f);
                } else if (is_LinearGray_stdScale) {
                    red = fromsRGB8LUT16[red] & 0xffff;
                    grn = fromsRGB8LUT16[grn] & 0xffff;
                    blu = fromsRGB8LUT16[blu] & 0xffff;
                    float gray = ((0.2125f * red) + (0.7154f * grn) + (0.0721f * blu)) / 65535.0f;
                    factor = 32767.0f;
                    if (supportsAlpha) {
                        alp = (rgb >> 24) & 0xff;
                        sdata[1] = (short) (alp * (32767.0f / 255.0f) + 0.5f);
                        if (isAlphaPremultiplied) {
                            factor = alp * factor * (1.0f / 255.0f);
                        }
                    }
                    sdata[0] = (short) (gray * factor + 0.5f);
                } else if (is_ICCGray_stdScale) {
                    red = fromsRGB8LUT16[red] & 0xffff;
                    grn = fromsRGB8LUT16[grn] & 0xffff;
                    blu = fromsRGB8LUT16[blu] & 0xffff;
                    int gray = (int) ((0.2125f * red) + (0.7154f * grn) + (0.0721f * blu) + 0.5f);
                    gray = fromLinearGray16ToOtherGray16LUT[gray] & 0xffff;
                    factor = 32767.0f / 65535.0f;
                    if (supportsAlpha) {
                        alp = (rgb >> 24) & 0xff;
                        sdata[1] = (short) (alp * (32767.0f / 255.0f) + 0.5f);
                        if (isAlphaPremultiplied) {
                            factor = alp * factor * (1.0f / 255.0f);
                        }
                    }
                    sdata[0] = (short) (gray * factor + 0.5f);
                } else {
                    factor = 1.0f / 255.0f;
                    float[] norm = new float[3];
                    norm[0] = red * factor;
                    norm[1] = grn * factor;
                    norm[2] = blu * factor;
                    norm = colorSpace.fromRGB(norm);
                    if (nonStdScale) {
                        for (int i = 0; i < numColorComponents; i++) {
                            norm[i] = (norm[i] - compOffset[i]) * compScale[i];
                            // REMIND: need to analyze whether this
                            // clamping is necessary
                            if (norm[i] < 0.0f) {
                                norm[i] = 0.0f;
                            }
                            if (norm[i] > 1.0f) {
                                norm[i] = 1.0f;
                            }
                        }
                    }
                    factor = 32767.0f;
                    if (supportsAlpha) {
                        alp = (rgb >> 24) & 0xff;
                        sdata[numColorComponents] = (short) (alp * (32767.0f / 255.0f) + 0.5f);
                        if (isAlphaPremultiplied) {
                            factor *= alp * (1.0f / 255.0f);
                        }
                    }
                    for (int i = 0; i < numColorComponents; i++) {
                        sdata[i] = (short) (norm[i] * factor + 0.5f);
                    }
                }
                return sdata;
            }
            case DataBuffer.TYPE_FLOAT: {
                float[] fdata;
                if (pixel == null) {
                    fdata = new float[numComponents];
                } else {
                    fdata = (float[]) pixel;
                }
                float factor;
                if (is_sRGB_stdScale || is_LinearRGB_stdScale) {
                    if (is_LinearRGB_stdScale) {
                        red = fromsRGB8LUT16[red] & 0xffff;
                        grn = fromsRGB8LUT16[grn] & 0xffff;
                        blu = fromsRGB8LUT16[blu] & 0xffff;
                        factor = 1.0f / 65535.0f;
                    } else {
                        factor = 1.0f / 255.0f;
                    }
                    if (supportsAlpha) {
                        alp = (rgb >> 24) & 0xff;
                        fdata[3] = alp * (1.0f / 255.0f);
                        if (isAlphaPremultiplied) {
                            factor *= fdata[3];
                        }
                    }
                    fdata[0] = red * factor;
                    fdata[1] = grn * factor;
                    fdata[2] = blu * factor;
                } else if (is_LinearGray_stdScale) {
                    red = fromsRGB8LUT16[red] & 0xffff;
                    grn = fromsRGB8LUT16[grn] & 0xffff;
                    blu = fromsRGB8LUT16[blu] & 0xffff;
                    fdata[0] = ((0.2125f * red) + (0.7154f * grn) + (0.0721f * blu)) / 65535.0f;
                    if (supportsAlpha) {
                        alp = (rgb >> 24) & 0xff;
                        fdata[1] = alp * (1.0f / 255.0f);
                        if (isAlphaPremultiplied) {
                            fdata[0] *= fdata[1];
                        }
                    }
                } else if (is_ICCGray_stdScale) {
                    red = fromsRGB8LUT16[red] & 0xffff;
                    grn = fromsRGB8LUT16[grn] & 0xffff;
                    blu = fromsRGB8LUT16[blu] & 0xffff;
                    int gray = (int) ((0.2125f * red) + (0.7154f * grn) + (0.0721f * blu) + 0.5f);
                    fdata[0] = (fromLinearGray16ToOtherGray16LUT[gray] & 0xffff) / 65535.0f;
                    if (supportsAlpha) {
                        alp = (rgb >> 24) & 0xff;
                        fdata[1] = alp * (1.0f / 255.0f);
                        if (isAlphaPremultiplied) {
                            fdata[0] *= fdata[1];
                        }
                    }
                } else {
                    float[] norm = new float[3];
                    factor = 1.0f / 255.0f;
                    norm[0] = red * factor;
                    norm[1] = grn * factor;
                    norm[2] = blu * factor;
                    norm = colorSpace.fromRGB(norm);
                    if (supportsAlpha) {
                        alp = (rgb >> 24) & 0xff;
                        fdata[numColorComponents] = alp * factor;
                        if (isAlphaPremultiplied) {
                            factor *= alp;
                            for (int i = 0; i < numColorComponents; i++) {
                                norm[i] *= factor;
                            }
                        }
                    }
                    for (int i = 0; i < numColorComponents; i++) {
                        fdata[i] = norm[i];
                    }
                }
                return fdata;
            }
            case DataBuffer.TYPE_DOUBLE: {
                double[] ddata;
                if (pixel == null) {
                    ddata = new double[numComponents];
                } else {
                    ddata = (double[]) pixel;
                }
                if (is_sRGB_stdScale || is_LinearRGB_stdScale) {
                    double factor;
                    if (is_LinearRGB_stdScale) {
                        red = fromsRGB8LUT16[red] & 0xffff;
                        grn = fromsRGB8LUT16[grn] & 0xffff;
                        blu = fromsRGB8LUT16[blu] & 0xffff;
                        factor = 1.0 / 65535.0;
                    } else {
                        factor = 1.0 / 255.0;
                    }
                    if (supportsAlpha) {
                        alp = (rgb >> 24) & 0xff;
                        ddata[3] = alp * (1.0 / 255.0);
                        if (isAlphaPremultiplied) {
                            factor *= ddata[3];
                        }
                    }
                    ddata[0] = red * factor;
                    ddata[1] = grn * factor;
                    ddata[2] = blu * factor;
                } else if (is_LinearGray_stdScale) {
                    red = fromsRGB8LUT16[red] & 0xffff;
                    grn = fromsRGB8LUT16[grn] & 0xffff;
                    blu = fromsRGB8LUT16[blu] & 0xffff;
                    ddata[0] = ((0.2125 * red) + (0.7154 * grn) + (0.0721 * blu)) / 65535.0;
                    if (supportsAlpha) {
                        alp = (rgb >> 24) & 0xff;
                        ddata[1] = alp * (1.0 / 255.0);
                        if (isAlphaPremultiplied) {
                            ddata[0] *= ddata[1];
                        }
                    }
                } else if (is_ICCGray_stdScale) {
                    red = fromsRGB8LUT16[red] & 0xffff;
                    grn = fromsRGB8LUT16[grn] & 0xffff;
                    blu = fromsRGB8LUT16[blu] & 0xffff;
                    int gray = (int) ((0.2125f * red) + (0.7154f * grn) + (0.0721f * blu) + 0.5f);
                    ddata[0] = (fromLinearGray16ToOtherGray16LUT[gray] & 0xffff) / 65535.0;
                    if (supportsAlpha) {
                        alp = (rgb >> 24) & 0xff;
                        ddata[1] = alp * (1.0 / 255.0);
                        if (isAlphaPremultiplied) {
                            ddata[0] *= ddata[1];
                        }
                    }
                } else {
                    float factor = 1.0f / 255.0f;
                    float[] norm = new float[3];
                    norm[0] = red * factor;
                    norm[1] = grn * factor;
                    norm[2] = blu * factor;
                    norm = colorSpace.fromRGB(norm);
                    if (supportsAlpha) {
                        alp = (rgb >> 24) & 0xff;
                        ddata[numColorComponents] = alp * (1.0 / 255.0);
                        if (isAlphaPremultiplied) {
                            factor *= alp;
                            for (int i = 0; i < numColorComponents; i++) {
                                norm[i] *= factor;
                            }
                        }
                    }
                    for (int i = 0; i < numColorComponents; i++) {
                        ddata[i] = norm[i];
                    }
                }
                return ddata;
            }
            }
        }

        // Handle BYTE, USHORT, & INT here
        //REMIND: maybe more efficient not to use int array for
        //DataBuffer.TYPE_USHORT and DataBuffer.TYPE_INT
        int[] intpixel;
        if (transferType == DataBuffer.TYPE_INT && pixel != null) {
            intpixel = (int[]) pixel;
        } else {
            intpixel = new int[numComponents];
        }

        if (is_sRGB_stdScale || is_LinearRGB_stdScale) {
            int precision;
            float factor;
            if (is_LinearRGB_stdScale) {
                if (transferType == DataBuffer.TYPE_BYTE) {
                    red = fromsRGB8LUT8[red] & 0xff;
                    grn = fromsRGB8LUT8[grn] & 0xff;
                    blu = fromsRGB8LUT8[blu] & 0xff;
                    precision = 8;
                    factor = 1.0f / 255.0f;
                } else {
                    red = fromsRGB8LUT16[red] & 0xffff;
                    grn = fromsRGB8LUT16[grn] & 0xffff;
                    blu = fromsRGB8LUT16[blu] & 0xffff;
                    precision = 16;
                    factor = 1.0f / 65535.0f;
                }
            } else {
                precision = 8;
                factor = 1.0f / 255.0f;
            }
            if (supportsAlpha) {
                alp = (rgb >> 24) & 0xff;
                if (nBits[3] == 8) {
                    intpixel[3] = alp;
                } else {
                    intpixel[3] = (int) (alp * (1.0f / 255.0f) * ((1 << nBits[3]) - 1) + 0.5f);
                }
                if (isAlphaPremultiplied) {
                    factor *= (alp * (1.0f / 255.0f));
                    precision = -1; // force component calculations below
                }
            }
            if (nBits[0] == precision) {
                intpixel[0] = red;
            } else {
                intpixel[0] = (int) (red * factor * ((1 << nBits[0]) - 1) + 0.5f);
            }
            if (nBits[1] == precision) {
                intpixel[1] = grn;
            } else {
                intpixel[1] = (int) (grn * factor * ((1 << nBits[1]) - 1) + 0.5f);
            }
            if (nBits[2] == precision) {
                intpixel[2] = blu;
            } else {
                intpixel[2] = (int) (blu * factor * ((1 << nBits[2]) - 1) + 0.5f);
            }
        } else if (is_LinearGray_stdScale) {
            red = fromsRGB8LUT16[red] & 0xffff;
            grn = fromsRGB8LUT16[grn] & 0xffff;
            blu = fromsRGB8LUT16[blu] & 0xffff;
            float gray = ((0.2125f * red) + (0.7154f * grn) + (0.0721f * blu)) / 65535.0f;
            if (supportsAlpha) {
                alp = (rgb >> 24) & 0xff;
                if (nBits[1] == 8) {
                    intpixel[1] = alp;
                } else {
                    intpixel[1] = (int) (alp * (1.0f / 255.0f) * ((1 << nBits[1]) - 1) + 0.5f);
                }
                if (isAlphaPremultiplied) {
                    gray *= (alp * (1.0f / 255.0f));
                }
            }
            intpixel[0] = (int) (gray * ((1 << nBits[0]) - 1) + 0.5f);
        } else if (is_ICCGray_stdScale) {
            red = fromsRGB8LUT16[red] & 0xffff;
            grn = fromsRGB8LUT16[grn] & 0xffff;
            blu = fromsRGB8LUT16[blu] & 0xffff;
            int gray16 = (int) ((0.2125f * red) + (0.7154f * grn) + (0.0721f * blu) + 0.5f);
            float gray = (fromLinearGray16ToOtherGray16LUT[gray16] & 0xffff) / 65535.0f;
            if (supportsAlpha) {
                alp = (rgb >> 24) & 0xff;
                if (nBits[1] == 8) {
                    intpixel[1] = alp;
                } else {
                    intpixel[1] = (int) (alp * (1.0f / 255.0f) * ((1 << nBits[1]) - 1) + 0.5f);
                }
                if (isAlphaPremultiplied) {
                    gray *= (alp * (1.0f / 255.0f));
                }
            }
            intpixel[0] = (int) (gray * ((1 << nBits[0]) - 1) + 0.5f);
        } else {
            // Need to convert the color
            float[] norm = new float[3];
            float factor = 1.0f / 255.0f;
            norm[0] = red * factor;
            norm[1] = grn * factor;
            norm[2] = blu * factor;
            norm = colorSpace.fromRGB(norm);
            if (nonStdScale) {
                for (int i = 0; i < numColorComponents; i++) {
                    norm[i] = (norm[i] - compOffset[i]) * compScale[i];
                    // REMIND: need to analyze whether this
                    // clamping is necessary
                    if (norm[i] < 0.0f) {
                        norm[i] = 0.0f;
                    }
                    if (norm[i] > 1.0f) {
                        norm[i] = 1.0f;
                    }
                }
            }
            if (supportsAlpha) {
                alp = (rgb >> 24) & 0xff;
                if (nBits[numColorComponents] == 8) {
                    intpixel[numColorComponents] = alp;
                } else {
                    intpixel[numColorComponents] = (int) (alp * factor * ((1 << nBits[numColorComponents]) - 1)
                            + 0.5f);
                }
                if (isAlphaPremultiplied) {
                    factor *= alp;
                    for (int i = 0; i < numColorComponents; i++) {
                        norm[i] *= factor;
                    }
                }
            }
            for (int i = 0; i < numColorComponents; i++) {
                intpixel[i] = (int) (norm[i] * ((1 << nBits[i]) - 1) + 0.5f);
            }
        }

        switch (transferType) {
        case DataBuffer.TYPE_BYTE: {
            byte[] bdata;
            if (pixel == null) {
                bdata = new byte[numComponents];
            } else {
                bdata = (byte[]) pixel;
            }
            for (int i = 0; i < numComponents; i++) {
                bdata[i] = (byte) (0xff & intpixel[i]);
            }
            return bdata;
        }
        case DataBuffer.TYPE_USHORT: {
            short[] sdata;
            if (pixel == null) {
                sdata = new short[numComponents];
            } else {
                sdata = (short[]) pixel;
            }
            for (int i = 0; i < numComponents; i++) {
                sdata[i] = (short) (intpixel[i] & 0xffff);
            }
            return sdata;
        }
        case DataBuffer.TYPE_INT:
            if (maxBits > 23) {
                // fix 4412670 - for components of 24 or more bits
                // some calculations done above with float precision
                // may lose enough precision that the integer result
                // overflows nBits, so we need to clamp.
                for (int i = 0; i < numComponents; i++) {
                    if (intpixel[i] > ((1 << nBits[i]) - 1)) {
                        intpixel[i] = (1 << nBits[i]) - 1;
                    }
                }
            }
            return intpixel;
        }
        throw new IllegalArgumentException(
                "This method has not been " + "implemented for transferType " + transferType);
    }

    /** Returns an array of unnormalized color/alpha components given a pixel
      * in this {@code ColorModel}.
      * An IllegalArgumentException is thrown if the component value for this
      * {@code ColorModel} is not conveniently representable in the
      * unnormalized form.  Color/alpha components are stored
      * in the {@code components} array starting at {@code offset}
      * (even if the array is allocated by this method).
      *
      * @param pixel The pixel value specified as an integer.
      * @param components An integer array in which to store the unnormalized
      * color/alpha components. If the {@code components} array is null,
      * a new array is allocated.
      * @param offset An offset into the {@code components} array.
      *
      * @return The components array.
      *
      * @throws IllegalArgumentException If there is more than one
      * component in this {@code ColorModel}.
      * @throws IllegalArgumentException If this
      * {@code ColorModel} does not support the unnormalized form
      * @throws ArrayIndexOutOfBoundsException If the {@code components}
      * array is not null and is not large enough to hold all the color and
      * alpha components (starting at offset).
      */
    public int[] getComponents(int pixel, int[] components, int offset) {
        if (numComponents > 1) {
            throw new IllegalArgumentException("More than one component per pixel");
        }
        if (needScaleInit) {
            initScale();
        }
        if (noUnnorm) {
            throw new IllegalArgumentException("This ColorModel does not support the unnormalized form");
        }
        if (components == null) {
            components = new int[offset + 1];
        }

        components[offset + 0] = (pixel & ((1 << nBits[0]) - 1));
        return components;
    }

    /**
     * Returns an array of unnormalized color/alpha components given a pixel
     * in this {@code ColorModel}.  The pixel value is specified by an
     * array of data elements of type {@code transferType} passed in as
     * an object reference.
     * An IllegalArgumentException is thrown if the component values for this
     * {@code ColorModel} are not conveniently representable in the
     * unnormalized form.
     * Color/alpha components are stored in the {@code components} array
     * starting at  {@code offset} (even if the array is allocated by
     * this method).  Since {@code ComponentColorModel} can be
     * subclassed, subclasses inherit the
     * implementation of this method and if they don't override it then
     * this method might throw an exception if they use an unsupported
     * {@code transferType}.
     *
     * @param pixel A pixel value specified by an array of data elements of
     * type {@code transferType}.
     * @param components An integer array in which to store the unnormalized
     * color/alpha components. If the {@code components} array is null,
     * a new array is allocated.
     * @param offset An offset into the {@code components} array.
     *
     * @return The {@code components} array.
     *
     * @throws IllegalArgumentException If this
     * {@code ComponentColorModel} does not support the unnormalized form
     * @throws UnsupportedOperationException in some cases iff the
     * transfer type of this {@code ComponentColorModel}
     * is not one of the following transfer types:
     * {@code DataBuffer.TYPE_BYTE}, {@code DataBuffer.TYPE_USHORT},
     * or {@code DataBuffer.TYPE_INT}.
     * @throws ClassCastException If {@code pixel} is not a primitive
     * array of type {@code transferType}.
     * @throws IllegalArgumentException If the {@code components} array is
     * not null and is not large enough to hold all the color and alpha
     * components (starting at offset), or if {@code pixel} is not large
     * enough to hold a pixel value for this ColorModel.
     */
    public int[] getComponents(Object pixel, int[] components, int offset) {
        int[] intpixel;
        if (needScaleInit) {
            initScale();
        }
        if (noUnnorm) {
            throw new IllegalArgumentException("This ColorModel does not support the unnormalized form");
        }
        if (pixel instanceof int[]) {
            intpixel = (int[]) pixel;
        } else {
            intpixel = DataBuffer.toIntArray(pixel);
            if (intpixel == null) {
                throw new UnsupportedOperationException(
                        "This method has not been " + "implemented for transferType " + transferType);
            }
        }
        if (intpixel.length < numComponents) {
            throw new IllegalArgumentException("Length of pixel array < number of components in model");
        }
        if (components == null) {
            components = new int[offset + numComponents];
        } else if ((components.length - offset) < numComponents) {
            throw new IllegalArgumentException("Length of components array < number of components in model");
        }
        System.arraycopy(intpixel, 0, components, offset, numComponents);

        return components;
    }

    /**
     * Returns an array of all of the color/alpha components in unnormalized
     * form, given a normalized component array.  Unnormalized components
     * are unsigned integral values between 0 and 2<sup>n</sup> - 1, where
     * n is the number of bits for a particular component.  Normalized
     * components are float values between a per component minimum and
     * maximum specified by the {@code ColorSpace} object for this
     * {@code ColorModel}.  An {@code IllegalArgumentException}
     * will be thrown if color component values for this
     * {@code ColorModel} are not conveniently representable in the
     * unnormalized form.  If the
     * {@code components} array is {@code null}, a new array
     * will be allocated.  The {@code components} array will
     * be returned.  Color/alpha components are stored in the
     * {@code components} array starting at {@code offset} (even
     * if the array is allocated by this method). An
     * {@code ArrayIndexOutOfBoundsException} is thrown if the
     * {@code components} array is not {@code null} and is not
     * large enough to hold all the color and alpha
     * components (starting at {@code offset}).  An
     * {@code IllegalArgumentException} is thrown if the
     * {@code normComponents} array is not large enough to hold
     * all the color and alpha components starting at
     * {@code normOffset}.
     * @param normComponents an array containing normalized components
     * @param normOffset the offset into the {@code normComponents}
     * array at which to start retrieving normalized components
     * @param components an array that receives the components from
     * {@code normComponents}
     * @param offset the index into {@code components} at which to
     * begin storing normalized components from
     * {@code normComponents}
     * @return an array containing unnormalized color and alpha
     * components.
     * @throws IllegalArgumentException If this
     * {@code ComponentColorModel} does not support the unnormalized form
     * @throws IllegalArgumentException if the length of
     *          {@code normComponents} minus {@code normOffset}
     *          is less than {@code numComponents}
     */
    public int[] getUnnormalizedComponents(float[] normComponents, int normOffset, int[] components, int offset) {
        if (needScaleInit) {
            initScale();
        }
        if (noUnnorm) {
            throw new IllegalArgumentException("This ColorModel does not support the unnormalized form");
        }
        return super.getUnnormalizedComponents(normComponents, normOffset, components, offset);
    }

    /**
     * Returns an array of all of the color/alpha components in normalized
     * form, given an unnormalized component array.  Unnormalized components
     * are unsigned integral values between 0 and 2<sup>n</sup> - 1, where
     * n is the number of bits for a particular component.  Normalized
     * components are float values between a per component minimum and
     * maximum specified by the {@code ColorSpace} object for this
     * {@code ColorModel}.  An {@code IllegalArgumentException}
     * will be thrown if color component values for this
     * {@code ColorModel} are not conveniently representable in the
     * unnormalized form.  If the
     * {@code normComponents} array is {@code null}, a new array
     * will be allocated.  The {@code normComponents} array
     * will be returned.  Color/alpha components are stored in the
     * {@code normComponents} array starting at
     * {@code normOffset} (even if the array is allocated by this
     * method).  An {@code ArrayIndexOutOfBoundsException} is thrown
     * if the {@code normComponents} array is not {@code null}
     * and is not large enough to hold all the color and alpha components
     * (starting at {@code normOffset}).  An
     * {@code IllegalArgumentException} is thrown if the
     * {@code components} array is not large enough to hold all the
     * color and alpha components starting at {@code offset}.
     * @param components an array containing unnormalized components
     * @param offset the offset into the {@code components} array at
     * which to start retrieving unnormalized components
     * @param normComponents an array that receives the normalized components
     * @param normOffset the index into {@code normComponents} at
     * which to begin storing normalized components
     * @return an array containing normalized color and alpha
     * components.
     * @throws IllegalArgumentException If this
     * {@code ComponentColorModel} does not support the unnormalized form
     */
    public float[] getNormalizedComponents(int[] components, int offset, float[] normComponents, int normOffset) {
        if (needScaleInit) {
            initScale();
        }
        if (noUnnorm) {
            throw new IllegalArgumentException("This ColorModel does not support the unnormalized form");
        }
        return super.getNormalizedComponents(components, offset, normComponents, normOffset);
    }

    /**
     * Returns a pixel value represented as an int in this {@code ColorModel},
     * given an array of unnormalized color/alpha components.
     *
     * @param components An array of unnormalized color/alpha components.
     * @param offset An offset into the {@code components} array.
     *
     * @return A pixel value represented as an int.
     *
     * @throws IllegalArgumentException If there is more than one component
     * in this {@code ColorModel}.
     * @throws IllegalArgumentException If this
     * {@code ComponentColorModel} does not support the unnormalized form
     */
    public int getDataElement(int[] components, int offset) {
        if (needScaleInit) {
            initScale();
        }
        if (numComponents == 1) {
            if (noUnnorm) {
                throw new IllegalArgumentException("This ColorModel does not support the unnormalized form");
            }
            return components[offset + 0];
        }
        throw new IllegalArgumentException("This model returns " + numComponents + " elements in the pixel array.");
    }

    /**
     * Returns a data element array representation of a pixel in this
     * {@code ColorModel}, given an array of unnormalized color/alpha
     * components. This array can then be passed to the {@code setDataElements}
     * method of a {@code WritableRaster} object.
     *
     * @param components An array of unnormalized color/alpha components.
     * @param offset The integer offset into the {@code components} array.
     * @param obj The object in which to store the data element array
     * representation of the pixel. If {@code obj} variable is null,
     * a new array is allocated.  If {@code obj} is not null, it must
     * be a primitive array of type {@code transferType}. An
     * {@code ArrayIndexOutOfBoundsException} is thrown if
     * {@code obj} is not large enough to hold a pixel value
     * for this {@code ColorModel}.  Since
     * {@code ComponentColorModel} can be subclassed, subclasses
     * inherit the implementation of this method and if they don't
     * override it then they throw an exception if they use an
     * unsupported {@code transferType}.
     *
     * @return The data element array representation of a pixel
     * in this {@code ColorModel}.
     *
     * @throws IllegalArgumentException If the components array
     * is not large enough to hold all the color and alpha components
     * (starting at offset).
     * @throws ClassCastException If {@code obj} is not null and is not a
     * primitive  array of type {@code transferType}.
     * @throws ArrayIndexOutOfBoundsException If {@code obj} is not large
     * enough to hold a pixel value for this {@code ColorModel}.
     * @throws IllegalArgumentException If this
     * {@code ComponentColorModel} does not support the unnormalized form
     * @throws UnsupportedOperationException If the transfer type of
     * this {@code ComponentColorModel}
     * is not one of the following transfer types:
     * {@code DataBuffer.TYPE_BYTE}, {@code DataBuffer.TYPE_USHORT},
     * or {@code DataBuffer.TYPE_INT}.
     *
     * @see WritableRaster#setDataElements
     * @see SampleModel#setDataElements
     */
    public Object getDataElements(int[] components, int offset, Object obj) {
        if (needScaleInit) {
            initScale();
        }
        if (noUnnorm) {
            throw new IllegalArgumentException("This ColorModel does not support the unnormalized form");
        }
        if ((components.length - offset) < numComponents) {
            throw new IllegalArgumentException("Component array too small" + " (should be " + numComponents);
        }
        switch (transferType) {
        case DataBuffer.TYPE_INT: {
            int[] pixel;
            if (obj == null) {
                pixel = new int[numComponents];
            } else {
                pixel = (int[]) obj;
            }
            System.arraycopy(components, offset, pixel, 0, numComponents);
            return pixel;
        }

        case DataBuffer.TYPE_BYTE: {
            byte[] pixel;
            if (obj == null) {
                pixel = new byte[numComponents];
            } else {
                pixel = (byte[]) obj;
            }
            for (int i = 0; i < numComponents; i++) {
                pixel[i] = (byte) (components[offset + i] & 0xff);
            }
            return pixel;
        }

        case DataBuffer.TYPE_USHORT: {
            short[] pixel;
            if (obj == null) {
                pixel = new short[numComponents];
            } else {
                pixel = (short[]) obj;
            }
            for (int i = 0; i < numComponents; i++) {
                pixel[i] = (short) (components[offset + i] & 0xffff);
            }
            return pixel;
        }

        default:
            throw new UnsupportedOperationException(
                    "This method has not been " + "implemented for transferType " + transferType);
        }
    }

    /**
     * Returns a pixel value represented as an {@code int} in this
     * {@code ColorModel}, given an array of normalized color/alpha
     * components.  This method will throw an
     * {@code IllegalArgumentException} if pixel values for this
     * {@code ColorModel} are not conveniently representable as a
     * single {@code int}.  An
     * {@code ArrayIndexOutOfBoundsException} is thrown if  the
     * {@code normComponents} array is not large enough to hold all the
     * color and alpha components (starting at {@code normOffset}).
     * @param normComponents an array of normalized color and alpha
     * components
     * @param normOffset the index into {@code normComponents} at which to
     * begin retrieving the color and alpha components
     * @return an {@code int} pixel value in this
     * {@code ColorModel} corresponding to the specified components.
     * @throws IllegalArgumentException if
     *  pixel values for this {@code ColorModel} are not
     *  conveniently representable as a single {@code int}
     * @throws ArrayIndexOutOfBoundsException if
     *  the {@code normComponents} array is not large enough to
     *  hold all of the color and alpha components starting at
     *  {@code normOffset}
     * @since 1.4
     */
    public int getDataElement(float[] normComponents, int normOffset) {
        if (numComponents > 1) {
            throw new IllegalArgumentException("More than one component per pixel");
        }
        if (signed) {
            throw new IllegalArgumentException("Component value is signed");
        }
        if (needScaleInit) {
            initScale();
        }
        Object pixel = getDataElements(normComponents, normOffset, null);
        switch (transferType) {
        case DataBuffer.TYPE_BYTE: {
            byte[] bpixel = (byte[]) pixel;
            return bpixel[0] & 0xff;
        }
        case DataBuffer.TYPE_USHORT: {
            short[] uspixel = (short[]) pixel;
            return uspixel[0] & 0xffff;
        }
        case DataBuffer.TYPE_INT: {
            int[] ipixel = (int[]) pixel;
            return ipixel[0];
        }
        default:
            throw new UnsupportedOperationException(
                    "This method has not been " + "implemented for transferType " + transferType);
        }
    }

    /**
     * Returns a data element array representation of a pixel in this
     * {@code ColorModel}, given an array of normalized color/alpha
     * components.  This array can then be passed to the
     * {@code setDataElements} method of a {@code WritableRaster}
     * object.  An {@code ArrayIndexOutOfBoundsException} is thrown
     * if the {@code normComponents} array is not large enough to hold
     * all the color and alpha components (starting at
     * {@code normOffset}).  If the {@code obj} variable is
     * {@code null}, a new array will be allocated.  If
     * {@code obj} is not {@code null}, it must be a primitive
     * array of type transferType; otherwise, a
     * {@code ClassCastException} is thrown.  An
     * {@code ArrayIndexOutOfBoundsException} is thrown if
     * {@code obj} is not large enough to hold a pixel value for this
     * {@code ColorModel}.
     * @param normComponents an array of normalized color and alpha
     * components
     * @param normOffset the index into {@code normComponents} at which to
     * begin retrieving color and alpha components
     * @param obj a primitive data array to hold the returned pixel
     * @return an {@code Object} which is a primitive data array
     * representation of a pixel
     * @throws ClassCastException if {@code obj}
     *  is not a primitive array of type {@code transferType}
     * @throws ArrayIndexOutOfBoundsException if
     *  {@code obj} is not large enough to hold a pixel value
     *  for this {@code ColorModel} or the {@code normComponents}
     *  array is not large enough to hold all of the color and alpha
     *  components starting at {@code normOffset}
     * @see WritableRaster#setDataElements
     * @see SampleModel#setDataElements
     * @since 1.4
     */
    public Object getDataElements(float[] normComponents, int normOffset, Object obj) {
        boolean needAlpha = supportsAlpha && isAlphaPremultiplied;
        float[] stdNormComponents;
        if (needScaleInit) {
            initScale();
        }
        if (nonStdScale) {
            stdNormComponents = new float[numComponents];
            for (int c = 0, nc = normOffset; c < numColorComponents; c++, nc++) {
                stdNormComponents[c] = (normComponents[nc] - compOffset[c]) * compScale[c];
                // REMIND: need to analyze whether this
                // clamping is necessary
                if (stdNormComponents[c] < 0.0f) {
                    stdNormComponents[c] = 0.0f;
                }
                if (stdNormComponents[c] > 1.0f) {
                    stdNormComponents[c] = 1.0f;
                }
            }
            if (supportsAlpha) {
                stdNormComponents[numColorComponents] = normComponents[numColorComponents + normOffset];
            }
            normOffset = 0;
        } else {
            stdNormComponents = normComponents;
        }
        switch (transferType) {
        case DataBuffer.TYPE_BYTE:
            byte[] bpixel;
            if (obj == null) {
                bpixel = new byte[numComponents];
            } else {
                bpixel = (byte[]) obj;
            }
            if (needAlpha) {
                float alpha = stdNormComponents[numColorComponents + normOffset];
                for (int c = 0, nc = normOffset; c < numColorComponents; c++, nc++) {
                    bpixel[c] = (byte) ((stdNormComponents[nc] * alpha) * ((float) ((1 << nBits[c]) - 1)) + 0.5f);
                }
                bpixel[numColorComponents] = (byte) (alpha * ((float) ((1 << nBits[numColorComponents]) - 1))
                        + 0.5f);
            } else {
                for (int c = 0, nc = normOffset; c < numComponents; c++, nc++) {
                    bpixel[c] = (byte) (stdNormComponents[nc] * ((float) ((1 << nBits[c]) - 1)) + 0.5f);
                }
            }
            return bpixel;
        case DataBuffer.TYPE_USHORT:
            short[] uspixel;
            if (obj == null) {
                uspixel = new short[numComponents];
            } else {
                uspixel = (short[]) obj;
            }
            if (needAlpha) {
                float alpha = stdNormComponents[numColorComponents + normOffset];
                for (int c = 0, nc = normOffset; c < numColorComponents; c++, nc++) {
                    uspixel[c] = (short) ((stdNormComponents[nc] * alpha) * ((float) ((1 << nBits[c]) - 1)) + 0.5f);
                }
                uspixel[numColorComponents] = (short) (alpha * ((float) ((1 << nBits[numColorComponents]) - 1))
                        + 0.5f);
            } else {
                for (int c = 0, nc = normOffset; c < numComponents; c++, nc++) {
                    uspixel[c] = (short) (stdNormComponents[nc] * ((float) ((1 << nBits[c]) - 1)) + 0.5f);
                }
            }
            return uspixel;
        case DataBuffer.TYPE_INT:
            int[] ipixel;
            if (obj == null) {
                ipixel = new int[numComponents];
            } else {
                ipixel = (int[]) obj;
            }
            if (needAlpha) {
                float alpha = stdNormComponents[numColorComponents + normOffset];
                for (int c = 0, nc = normOffset; c < numColorComponents; c++, nc++) {
                    ipixel[c] = (int) ((stdNormComponents[nc] * alpha) * ((float) ((1 << nBits[c]) - 1)) + 0.5f);
                }
                ipixel[numColorComponents] = (int) (alpha * ((float) ((1 << nBits[numColorComponents]) - 1))
                        + 0.5f);
            } else {
                for (int c = 0, nc = normOffset; c < numComponents; c++, nc++) {
                    ipixel[c] = (int) (stdNormComponents[nc] * ((float) ((1 << nBits[c]) - 1)) + 0.5f);
                }
            }
            return ipixel;
        case DataBuffer.TYPE_SHORT:
            short[] spixel;
            if (obj == null) {
                spixel = new short[numComponents];
            } else {
                spixel = (short[]) obj;
            }
            if (needAlpha) {
                float alpha = stdNormComponents[numColorComponents + normOffset];
                for (int c = 0, nc = normOffset; c < numColorComponents; c++, nc++) {
                    spixel[c] = (short) (stdNormComponents[nc] * alpha * 32767.0f + 0.5f);
                }
                spixel[numColorComponents] = (short) (alpha * 32767.0f + 0.5f);
            } else {
                for (int c = 0, nc = normOffset; c < numComponents; c++, nc++) {
                    spixel[c] = (short) (stdNormComponents[nc] * 32767.0f + 0.5f);
                }
            }
            return spixel;
        case DataBuffer.TYPE_FLOAT:
            float[] fpixel;
            if (obj == null) {
                fpixel = new float[numComponents];
            } else {
                fpixel = (float[]) obj;
            }
            if (needAlpha) {
                float alpha = normComponents[numColorComponents + normOffset];
                for (int c = 0, nc = normOffset; c < numColorComponents; c++, nc++) {
                    fpixel[c] = normComponents[nc] * alpha;
                }
                fpixel[numColorComponents] = alpha;
            } else {
                for (int c = 0, nc = normOffset; c < numComponents; c++, nc++) {
                    fpixel[c] = normComponents[nc];
                }
            }
            return fpixel;
        case DataBuffer.TYPE_DOUBLE:
            double[] dpixel;
            if (obj == null) {
                dpixel = new double[numComponents];
            } else {
                dpixel = (double[]) obj;
            }
            if (needAlpha) {
                double alpha = (double) (normComponents[numColorComponents + normOffset]);
                for (int c = 0, nc = normOffset; c < numColorComponents; c++, nc++) {
                    dpixel[c] = normComponents[nc] * alpha;
                }
                dpixel[numColorComponents] = alpha;
            } else {
                for (int c = 0, nc = normOffset; c < numComponents; c++, nc++) {
                    dpixel[c] = (double) normComponents[nc];
                }
            }
            return dpixel;
        default:
            throw new UnsupportedOperationException(
                    "This method has not been " + "implemented for transferType " + transferType);
        }
    }

    /**
     * Returns an array of all of the color/alpha components in normalized
     * form, given a pixel in this {@code ColorModel}.  The pixel
     * value is specified by an array of data elements of type transferType
     * passed in as an object reference.  If pixel is not a primitive array
     * of type transferType, a {@code ClassCastException} is thrown.
     * An {@code ArrayIndexOutOfBoundsException} is thrown if
     * {@code pixel} is not large enough to hold a pixel value for this
     * {@code ColorModel}.
     * Normalized components are float values between a per component minimum
     * and maximum specified by the {@code ColorSpace} object for this
     * {@code ColorModel}.  If the
     * {@code normComponents} array is {@code null}, a new array
     * will be allocated.  The {@code normComponents} array
     * will be returned.  Color/alpha components are stored in the
     * {@code normComponents} array starting at
     * {@code normOffset} (even if the array is allocated by this
     * method).  An {@code ArrayIndexOutOfBoundsException} is thrown
     * if the {@code normComponents} array is not {@code null}
     * and is not large enough to hold all the color and alpha components
     * (starting at {@code normOffset}).
     * <p>
     * This method must be overridden by a subclass if that subclass
     * is designed to translate pixel sample values to color component values
     * in a non-default way.  The default translations implemented by this
     * class is described in the class comments.  Any subclass implementing
     * a non-default translation must follow the constraints on allowable
     * translations defined there.
     * @param pixel the specified pixel
     * @param normComponents an array to receive the normalized components
     * @param normOffset the offset into the {@code normComponents}
     * array at which to start storing normalized components
     * @return an array containing normalized color and alpha
     * components.
     * @throws ClassCastException if {@code pixel} is not a primitive
     *          array of type transferType
     * @throws ArrayIndexOutOfBoundsException if
     *          {@code normComponents} is not large enough to hold all
     *          color and alpha components starting at {@code normOffset}
     * @throws ArrayIndexOutOfBoundsException if
     *          {@code pixel} is not large enough to hold a pixel
     *          value for this {@code ColorModel}.
     * @since 1.4
     */
    public float[] getNormalizedComponents(Object pixel, float[] normComponents, int normOffset) {
        if (normComponents == null) {
            normComponents = new float[numComponents + normOffset];
        }
        switch (transferType) {
        case DataBuffer.TYPE_BYTE:
            byte[] bpixel = (byte[]) pixel;
            for (int c = 0, nc = normOffset; c < numComponents; c++, nc++) {
                normComponents[nc] = ((float) (bpixel[c] & 0xff)) / ((float) ((1 << nBits[c]) - 1));
            }
            break;
        case DataBuffer.TYPE_USHORT:
            short[] uspixel = (short[]) pixel;
            for (int c = 0, nc = normOffset; c < numComponents; c++, nc++) {
                normComponents[nc] = ((float) (uspixel[c] & 0xffff)) / ((float) ((1 << nBits[c]) - 1));
            }
            break;
        case DataBuffer.TYPE_INT:
            int[] ipixel = (int[]) pixel;
            for (int c = 0, nc = normOffset; c < numComponents; c++, nc++) {
                normComponents[nc] = ((float) ipixel[c]) / ((float) ((1 << nBits[c]) - 1));
            }
            break;
        case DataBuffer.TYPE_SHORT:
            short[] spixel = (short[]) pixel;
            for (int c = 0, nc = normOffset; c < numComponents; c++, nc++) {
                normComponents[nc] = ((float) spixel[c]) / 32767.0f;
            }
            break;
        case DataBuffer.TYPE_FLOAT:
            float[] fpixel = (float[]) pixel;
            for (int c = 0, nc = normOffset; c < numComponents; c++, nc++) {
                normComponents[nc] = fpixel[c];
            }
            break;
        case DataBuffer.TYPE_DOUBLE:
            double[] dpixel = (double[]) pixel;
            for (int c = 0, nc = normOffset; c < numComponents; c++, nc++) {
                normComponents[nc] = (float) dpixel[c];
            }
            break;
        default:
            throw new UnsupportedOperationException(
                    "This method has not been " + "implemented for transferType " + transferType);
        }

        if (supportsAlpha && isAlphaPremultiplied) {
            float alpha = normComponents[numColorComponents + normOffset];
            if (alpha != 0.0f) {
                float invAlpha = 1.0f / alpha;
                for (int c = normOffset; c < numColorComponents + normOffset; c++) {
                    normComponents[c] *= invAlpha;
                }
            }
        }
        if (min != null) {
            // Normally (i.e. when this class is not subclassed to override
            // this method), the test (min != null) will be equivalent to
            // the test (nonStdScale).  However, there is an unlikely, but
            // possible case, in which this method is overridden, nonStdScale
            // is set true by initScale(), the subclass method for some
            // reason calls this superclass method, but the min and
            // diffMinMax arrays were never initialized by setupLUTs().  In
            // that case, the right thing to do is follow the intended
            // semantics of this method, and rescale the color components
            // only if the ColorSpace min/max were detected to be other
            // than 0.0/1.0 by setupLUTs().  Note that this implies the
            // transferType is byte, ushort, int, or short - i.e. components
            // derived from float and double pixel data are never rescaled.
            for (int c = 0; c < numColorComponents; c++) {
                normComponents[c + normOffset] = min[c] + diffMinMax[c] * normComponents[c + normOffset];
            }
        }
        return normComponents;
    }

    /**
     * Forces the raster data to match the state specified in the
     * {@code isAlphaPremultiplied} variable, assuming the data
     * is currently correctly described by this {@code ColorModel}.
     * It may multiply or divide the color raster data by alpha, or
     * do nothing if the data is in the correct state.  If the data needs
     * to be coerced, this method also returns an instance of
     * this {@code ColorModel} with
     * the {@code isAlphaPremultiplied} flag set appropriately.
     * Since {@code ColorModel} can be subclassed, subclasses inherit
     * the implementation of this method and if they don't override it
     * then they throw an exception if they use an unsupported
     * {@code transferType}.
     *
     * @throws NullPointerException if {@code raster} is
     * {@code null} and data coercion is required.
     * @throws UnsupportedOperationException if the transfer type of
     * this {@code ComponentColorModel}
     * is not one of the supported transfer types:
     * {@code DataBuffer.TYPE_BYTE}, {@code DataBuffer.TYPE_USHORT},
     * {@code DataBuffer.TYPE_INT}, {@code DataBuffer.TYPE_SHORT},
     * {@code DataBuffer.TYPE_FLOAT}, or {@code DataBuffer.TYPE_DOUBLE}.
     */
    public ColorModel coerceData(WritableRaster raster, boolean isAlphaPremultiplied) {
        if ((supportsAlpha == false) || (this.isAlphaPremultiplied == isAlphaPremultiplied)) {
            // Nothing to do
            return this;
        }

        int w = raster.getWidth();
        int h = raster.getHeight();
        int aIdx = raster.getNumBands() - 1;
        float normAlpha;
        int rminX = raster.getMinX();
        int rY = raster.getMinY();
        int rX;
        if (isAlphaPremultiplied) {
            switch (transferType) {
            case DataBuffer.TYPE_BYTE: {
                byte[] pixel = null;
                byte[] zpixel = null;
                float alphaScale = 1.0f / ((float) ((1 << nBits[aIdx]) - 1));
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = (byte[]) raster.getDataElements(rX, rY, pixel);
                        normAlpha = (pixel[aIdx] & 0xff) * alphaScale;
                        if (normAlpha != 0.0f) {
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] = (byte) ((pixel[c] & 0xff) * normAlpha + 0.5f);
                            }
                            raster.setDataElements(rX, rY, pixel);
                        } else {
                            if (zpixel == null) {
                                zpixel = new byte[numComponents];
                                java.util.Arrays.fill(zpixel, (byte) 0);
                            }
                            raster.setDataElements(rX, rY, zpixel);
                        }
                    }
                }
            }
                break;
            case DataBuffer.TYPE_USHORT: {
                short[] pixel = null;
                short[] zpixel = null;
                float alphaScale = 1.0f / ((float) ((1 << nBits[aIdx]) - 1));
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = (short[]) raster.getDataElements(rX, rY, pixel);
                        normAlpha = (pixel[aIdx] & 0xffff) * alphaScale;
                        if (normAlpha != 0.0f) {
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] = (short) ((pixel[c] & 0xffff) * normAlpha + 0.5f);
                            }
                            raster.setDataElements(rX, rY, pixel);
                        } else {
                            if (zpixel == null) {
                                zpixel = new short[numComponents];
                                java.util.Arrays.fill(zpixel, (short) 0);
                            }
                            raster.setDataElements(rX, rY, zpixel);
                        }
                    }
                }
            }
                break;
            case DataBuffer.TYPE_INT: {
                int[] pixel = null;
                int[] zpixel = null;
                float alphaScale = 1.0f / ((float) ((1 << nBits[aIdx]) - 1));
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = (int[]) raster.getDataElements(rX, rY, pixel);
                        normAlpha = pixel[aIdx] * alphaScale;
                        if (normAlpha != 0.0f) {
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] = (int) (pixel[c] * normAlpha + 0.5f);
                            }
                            raster.setDataElements(rX, rY, pixel);
                        } else {
                            if (zpixel == null) {
                                zpixel = new int[numComponents];
                                java.util.Arrays.fill(zpixel, 0);
                            }
                            raster.setDataElements(rX, rY, zpixel);
                        }
                    }
                }
            }
                break;
            case DataBuffer.TYPE_SHORT: {
                short[] pixel = null;
                short[] zpixel = null;
                float alphaScale = 1.0f / 32767.0f;
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = (short[]) raster.getDataElements(rX, rY, pixel);
                        normAlpha = pixel[aIdx] * alphaScale;
                        if (normAlpha != 0.0f) {
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] = (short) (pixel[c] * normAlpha + 0.5f);
                            }
                            raster.setDataElements(rX, rY, pixel);
                        } else {
                            if (zpixel == null) {
                                zpixel = new short[numComponents];
                                java.util.Arrays.fill(zpixel, (short) 0);
                            }
                            raster.setDataElements(rX, rY, zpixel);
                        }
                    }
                }
            }
                break;
            case DataBuffer.TYPE_FLOAT: {
                float[] pixel = null;
                float[] zpixel = null;
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = (float[]) raster.getDataElements(rX, rY, pixel);
                        normAlpha = pixel[aIdx];
                        if (normAlpha != 0.0f) {
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] *= normAlpha;
                            }
                            raster.setDataElements(rX, rY, pixel);
                        } else {
                            if (zpixel == null) {
                                zpixel = new float[numComponents];
                                java.util.Arrays.fill(zpixel, 0.0f);
                            }
                            raster.setDataElements(rX, rY, zpixel);
                        }
                    }
                }
            }
                break;
            case DataBuffer.TYPE_DOUBLE: {
                double[] pixel = null;
                double[] zpixel = null;
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = (double[]) raster.getDataElements(rX, rY, pixel);
                        double dnormAlpha = pixel[aIdx];
                        if (dnormAlpha != 0.0) {
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] *= dnormAlpha;
                            }
                            raster.setDataElements(rX, rY, pixel);
                        } else {
                            if (zpixel == null) {
                                zpixel = new double[numComponents];
                                java.util.Arrays.fill(zpixel, 0.0);
                            }
                            raster.setDataElements(rX, rY, zpixel);
                        }
                    }
                }
            }
                break;
            default:
                throw new UnsupportedOperationException(
                        "This method has not been " + "implemented for transferType " + transferType);
            }
        } else {
            // We are premultiplied and want to divide it out
            switch (transferType) {
            case DataBuffer.TYPE_BYTE: {
                byte[] pixel = null;
                float alphaScale = 1.0f / ((float) ((1 << nBits[aIdx]) - 1));
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = (byte[]) raster.getDataElements(rX, rY, pixel);
                        normAlpha = (pixel[aIdx] & 0xff) * alphaScale;
                        if (normAlpha != 0.0f) {
                            float invAlpha = 1.0f / normAlpha;
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] = (byte) ((pixel[c] & 0xff) * invAlpha + 0.5f);
                            }
                            raster.setDataElements(rX, rY, pixel);
                        }
                    }
                }
            }
                break;
            case DataBuffer.TYPE_USHORT: {
                short[] pixel = null;
                float alphaScale = 1.0f / ((float) ((1 << nBits[aIdx]) - 1));
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = (short[]) raster.getDataElements(rX, rY, pixel);
                        normAlpha = (pixel[aIdx] & 0xffff) * alphaScale;
                        if (normAlpha != 0.0f) {
                            float invAlpha = 1.0f / normAlpha;
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] = (short) ((pixel[c] & 0xffff) * invAlpha + 0.5f);
                            }
                            raster.setDataElements(rX, rY, pixel);
                        }
                    }
                }
            }
                break;
            case DataBuffer.TYPE_INT: {
                int[] pixel = null;
                float alphaScale = 1.0f / ((float) ((1 << nBits[aIdx]) - 1));
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = (int[]) raster.getDataElements(rX, rY, pixel);
                        normAlpha = pixel[aIdx] * alphaScale;
                        if (normAlpha != 0.0f) {
                            float invAlpha = 1.0f / normAlpha;
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] = (int) (pixel[c] * invAlpha + 0.5f);
                            }
                            raster.setDataElements(rX, rY, pixel);
                        }
                    }
                }
            }
                break;
            case DataBuffer.TYPE_SHORT: {
                short[] pixel = null;
                float alphaScale = 1.0f / 32767.0f;
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = (short[]) raster.getDataElements(rX, rY, pixel);
                        normAlpha = pixel[aIdx] * alphaScale;
                        if (normAlpha != 0.0f) {
                            float invAlpha = 1.0f / normAlpha;
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] = (short) (pixel[c] * invAlpha + 0.5f);
                            }
                            raster.setDataElements(rX, rY, pixel);
                        }
                    }
                }
            }
                break;
            case DataBuffer.TYPE_FLOAT: {
                float[] pixel = null;
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = (float[]) raster.getDataElements(rX, rY, pixel);
                        normAlpha = pixel[aIdx];
                        if (normAlpha != 0.0f) {
                            float invAlpha = 1.0f / normAlpha;
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] *= invAlpha;
                            }
                            raster.setDataElements(rX, rY, pixel);
                        }
                    }
                }
            }
                break;
            case DataBuffer.TYPE_DOUBLE: {
                double[] pixel = null;
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = (double[]) raster.getDataElements(rX, rY, pixel);
                        double dnormAlpha = pixel[aIdx];
                        if (dnormAlpha != 0.0) {
                            double invAlpha = 1.0 / dnormAlpha;
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] *= invAlpha;
                            }
                            raster.setDataElements(rX, rY, pixel);
                        }
                    }
                }
            }
                break;
            default:
                throw new UnsupportedOperationException(
                        "This method has not been " + "implemented for transferType " + transferType);
            }
        }

        // Return a new color model
        if (!signed) {
            return new ComponentColorModel(colorSpace, nBits, supportsAlpha, isAlphaPremultiplied, transparency,
                    transferType);
        } else {
            return new ComponentColorModel(colorSpace, supportsAlpha, isAlphaPremultiplied, transparency,
                    transferType);
        }

    }

    /**
      * Returns true if {@code raster} is compatible with this
      * {@code ColorModel}; false if it is not.
      *
      * @param raster The {@code Raster} object to test for compatibility.
      *
      * @return {@code true} if {@code raster} is compatible with this
      * {@code ColorModel}, {@code false} if it is not.
      */
    public boolean isCompatibleRaster(Raster raster) {

        SampleModel sm = raster.getSampleModel();

        if (sm instanceof ComponentSampleModel) {
            if (sm.getNumBands() != getNumComponents()) {
                return false;
            }
            for (int i = 0; i < nBits.length; i++) {
                if (sm.getSampleSize(i) < nBits[i]) {
                    return false;
                }
            }
            return (raster.getTransferType() == transferType);
        } else {
            return false;
        }
    }

    /**
     * Creates a {@code WritableRaster} with the specified width and height,
     * that  has a data layout ({@code SampleModel}) compatible with
     * this {@code ColorModel}.
     *
     * @param w The width of the {@code WritableRaster} you want to create.
     * @param h The height of the {@code WritableRaster} you want to create.
     *
     * @return A {@code WritableRaster} that is compatible with
     * this {@code ColorModel}.
     * @see WritableRaster
     * @see SampleModel
     */
    public WritableRaster createCompatibleWritableRaster(int w, int h) {
        int dataSize = w * h * numComponents;
        WritableRaster raster = null;

        switch (transferType) {
        case DataBuffer.TYPE_BYTE:
        case DataBuffer.TYPE_USHORT:
            raster = Raster.createInterleavedRaster(transferType, w, h, numComponents, null);
            break;
        default:
            SampleModel sm = createCompatibleSampleModel(w, h);
            DataBuffer db = sm.createDataBuffer();
            raster = Raster.createWritableRaster(sm, db, null);
        }

        return raster;
    }

    /**
     * Creates a {@code SampleModel} with the specified width and height,
     * that  has a data layout compatible with this {@code ColorModel}.
     *
     * @param w The width of the {@code SampleModel} you want to create.
     * @param h The height of the {@code SampleModel} you want to create.
     *
     * @return A {@code SampleModel} that is compatible with this
     * {@code ColorModel}.
     *
     * @see SampleModel
     */
    public SampleModel createCompatibleSampleModel(int w, int h) {
        int[] bandOffsets = new int[numComponents];
        for (int i = 0; i < numComponents; i++) {
            bandOffsets[i] = i;
        }
        switch (transferType) {
        case DataBuffer.TYPE_BYTE:
        case DataBuffer.TYPE_USHORT:
            return new PixelInterleavedSampleModel(transferType, w, h, numComponents, w * numComponents,
                    bandOffsets);
        default:
            return new ComponentSampleModel(transferType, w, h, numComponents, w * numComponents, bandOffsets);
        }
    }

    /**
     * Checks whether or not the specified {@code SampleModel}
     * is compatible with this {@code ColorModel}.
     *
     * @param sm The {@code SampleModel} to test for compatibility.
     *
     * @return {@code true} if the {@code SampleModel} is
     * compatible with this {@code ColorModel}, {@code false}
     * if it is not.
     *
     * @see SampleModel
     */
    public boolean isCompatibleSampleModel(SampleModel sm) {
        if (!(sm instanceof ComponentSampleModel)) {
            return false;
        }

        // Must have the same number of components
        if (numComponents != sm.getNumBands()) {
            return false;
        }

        if (sm.getTransferType() != transferType) {
            return false;
        }

        return true;
    }

    /**
     * Returns a {@code Raster} representing the alpha channel of an image,
     * extracted from the input {@code Raster}.
     * This method assumes that {@code Raster} objects associated with
     * this {@code ColorModel} store the alpha band, if present, as
     * the last band of image data. Returns null if there is no separate spatial
     * alpha channel associated with this {@code ColorModel}.
     * This method creates a new {@code Raster}, but will share the data
     * array.
     *
     * @param raster The {@code WritableRaster} from which to extract the
     * alpha  channel.
     *
     * @return A {@code WritableRaster} containing the image's alpha channel.
     *
     */
    public WritableRaster getAlphaRaster(WritableRaster raster) {
        if (hasAlpha() == false) {
            return null;
        }

        int x = raster.getMinX();
        int y = raster.getMinY();
        int[] band = new int[1];
        band[0] = raster.getNumBands() - 1;
        return raster.createWritableChild(x, y, raster.getWidth(), raster.getHeight(), x, y, band);
    }

    /**
     * Tests if the specified {@code Object} is an instance
     * of {@code ComponentColorModel} and equals this
     * {@code ComponentColorModel}.
     * @param obj the {@code Object} to test for equality
     * @return {@code true} if the specified {@code Object}
     * is an instance of {@code ComponentColorModel} and equals this
     * {@code ComponentColorModel}; {@code false} otherwise.
     */
    @Override
    public boolean equals(Object obj) {
        if (!(obj instanceof ComponentColorModel)) {
            return false;
        }

        ComponentColorModel cm = (ComponentColorModel) obj;
        if (supportsAlpha != cm.hasAlpha() || isAlphaPremultiplied != cm.isAlphaPremultiplied()
                || pixel_bits != cm.getPixelSize() || transparency != cm.getTransparency()
                || numComponents != cm.getNumComponents() || (!(colorSpace.equals(cm.colorSpace)))
                || transferType != cm.transferType) {
            return false;
        }

        if (!(Arrays.equals(nBits, cm.getComponentSize()))) {
            return false;
        }

        return true;
    }

    /**
     * Returns the hash code for this ComponentColorModel.
     *
     * @return    a hash code for this ComponentColorModel.
     */
    @Override
    public int hashCode() {
        int result = hashCode;
        if (result == 0) {
            result = 7;
            result = 89 * result + this.pixel_bits;
            result = 89 * result + Arrays.hashCode(this.nBits);
            result = 89 * result + this.transparency;
            result = 89 * result + (this.supportsAlpha ? 1 : 0);
            result = 89 * result + (this.isAlphaPremultiplied ? 1 : 0);
            result = 89 * result + this.numComponents;
            result = 89 * result + this.colorSpace.hashCode();
            result = 89 * result + this.transferType;
            hashCode = result;
        }
        return result;
    }
}