java.awt.geom.PathIterator.java Source code

Java tutorial

Introduction

Here is the source code for java.awt.geom.PathIterator.java

Source

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.awt.geom;

import java.lang.annotation.Native;

/**
 * The {@code PathIterator} interface provides the mechanism
 * for objects that implement the {@link java.awt.Shape Shape}
 * interface to return the geometry of their boundary by allowing
 * a caller to retrieve the path of that boundary a segment at a
 * time.  This interface allows these objects to retrieve the path of
 * their boundary a segment at a time by using 1st through 3rd order
 * Bézier curves, which are lines and quadratic or cubic
 * Bézier splines.
 * <p>
 * Multiple subpaths can be expressed by using a "MOVETO" segment to
 * create a discontinuity in the geometry to move from the end of
 * one subpath to the beginning of the next.
 * <p>
 * Each subpath can be closed manually by ending the last segment in
 * the subpath on the same coordinate as the beginning "MOVETO" segment
 * for that subpath or by using a "CLOSE" segment to append a line
 * segment from the last point back to the first.
 * Be aware that manually closing an outline as opposed to using a
 * "CLOSE" segment to close the path might result in different line
 * style decorations being used at the end points of the subpath.
 * For example, the {@link java.awt.BasicStroke BasicStroke} object
 * uses a line "JOIN" decoration to connect the first and last points
 * if a "CLOSE" segment is encountered, whereas simply ending the path
 * on the same coordinate as the beginning coordinate results in line
 * "CAP" decorations being used at the ends.
 *
 * @see java.awt.Shape
 * @see java.awt.BasicStroke
 *
 * @author Jim Graham
 */
public interface PathIterator {
    /**
     * The winding rule constant for specifying an even-odd rule
     * for determining the interior of a path.
     * The even-odd rule specifies that a point lies inside the
     * path if a ray drawn in any direction from that point to
     * infinity is crossed by path segments an odd number of times.
     */
    @Native
    public static final int WIND_EVEN_ODD = 0;

    /**
     * The winding rule constant for specifying a non-zero rule
     * for determining the interior of a path.
     * The non-zero rule specifies that a point lies inside the
     * path if a ray drawn in any direction from that point to
     * infinity is crossed by path segments a different number
     * of times in the counter-clockwise direction than the
     * clockwise direction.
     */
    @Native
    public static final int WIND_NON_ZERO = 1;

    /**
     * The segment type constant for a point that specifies the
     * starting location for a new subpath.
     */
    @Native
    public static final int SEG_MOVETO = 0;

    /**
     * The segment type constant for a point that specifies the
     * end point of a line to be drawn from the most recently
     * specified point.
     */
    @Native
    public static final int SEG_LINETO = 1;

    /**
     * The segment type constant for the pair of points that specify
     * a quadratic parametric curve to be drawn from the most recently
     * specified point.
     * The curve is interpolated by solving the parametric control
     * equation in the range {@code (t=[0..1])} using
     * the most recently specified (current) point (CP),
     * the first control point (P1),
     * and the final interpolated control point (P2).
     * The parametric control equation for this curve is:
     * <pre>
     *          P(t) = B(2,0)*CP + B(2,1)*P1 + B(2,2)*P2
     *          0 &lt;= t &lt;= 1
     *
     *        B(n,m) = mth coefficient of nth degree Bernstein polynomial
     *               = C(n,m) * t^(m) * (1 - t)^(n-m)
     *        C(n,m) = Combinations of n things, taken m at a time
     *               = n! / (m! * (n-m)!)
     * </pre>
     */
    @Native
    public static final int SEG_QUADTO = 2;

    /**
     * The segment type constant for the set of 3 points that specify
     * a cubic parametric curve to be drawn from the most recently
     * specified point.
     * The curve is interpolated by solving the parametric control
     * equation in the range {@code (t=[0..1])} using
     * the most recently specified (current) point (CP),
     * the first control point (P1),
     * the second control point (P2),
     * and the final interpolated control point (P3).
     * The parametric control equation for this curve is:
     * <pre>
     *          P(t) = B(3,0)*CP + B(3,1)*P1 + B(3,2)*P2 + B(3,3)*P3
     *          0 &lt;= t &lt;= 1
     *
     *        B(n,m) = mth coefficient of nth degree Bernstein polynomial
     *               = C(n,m) * t^(m) * (1 - t)^(n-m)
     *        C(n,m) = Combinations of n things, taken m at a time
     *               = n! / (m! * (n-m)!)
     * </pre>
     * This form of curve is commonly known as a B&eacute;zier curve.
     */
    @Native
    public static final int SEG_CUBICTO = 3;

    /**
     * The segment type constant that specifies that
     * the preceding subpath should be closed by appending a line segment
     * back to the point corresponding to the most recent SEG_MOVETO.
     */
    @Native
    public static final int SEG_CLOSE = 4;

    /**
     * Returns the winding rule for determining the interior of the
     * path.
     * @return the winding rule.
     * @see #WIND_EVEN_ODD
     * @see #WIND_NON_ZERO
     */
    public int getWindingRule();

    /**
     * Tests if the iteration is complete.
     * @return {@code true} if all the segments have
     * been read; {@code false} otherwise.
     */
    public boolean isDone();

    /**
     * Moves the iterator to the next segment of the path forwards
     * along the primary direction of traversal as long as there are
     * more points in that direction.
     */
    public void next();

    /**
     * Returns the coordinates and type of the current path segment in
     * the iteration.
     * The return value is the path-segment type:
     * SEG_MOVETO, SEG_LINETO, SEG_QUADTO, SEG_CUBICTO, or SEG_CLOSE.
     * A float array of length 6 must be passed in and can be used to
     * store the coordinates of the point(s).
     * Each point is stored as a pair of float x,y coordinates.
     * SEG_MOVETO and SEG_LINETO types returns one point,
     * SEG_QUADTO returns two points,
     * SEG_CUBICTO returns 3 points
     * and SEG_CLOSE does not return any points.
     * @param coords an array that holds the data returned from
     * this method
     * @return the path-segment type of the current path segment.
     * @see #SEG_MOVETO
     * @see #SEG_LINETO
     * @see #SEG_QUADTO
     * @see #SEG_CUBICTO
     * @see #SEG_CLOSE
     */
    public int currentSegment(float[] coords);

    /**
     * Returns the coordinates and type of the current path segment in
     * the iteration.
     * The return value is the path-segment type:
     * SEG_MOVETO, SEG_LINETO, SEG_QUADTO, SEG_CUBICTO, or SEG_CLOSE.
     * A double array of length 6 must be passed in and can be used to
     * store the coordinates of the point(s).
     * Each point is stored as a pair of double x,y coordinates.
     * SEG_MOVETO and SEG_LINETO types returns one point,
     * SEG_QUADTO returns two points,
     * SEG_CUBICTO returns 3 points
     * and SEG_CLOSE does not return any points.
     * @param coords an array that holds the data returned from
     * this method
     * @return the path-segment type of the current path segment.
     * @see #SEG_MOVETO
     * @see #SEG_LINETO
     * @see #SEG_QUADTO
     * @see #SEG_CUBICTO
     * @see #SEG_CLOSE
     */
    public int currentSegment(double[] coords);
}