Java tutorial
/* * Copyright 2014 Simone Filice and Giuseppe Castellucci and Danilo Croce and Roberto Basili * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package it.uniroma2.sag.kelp.kernel.standard; import it.uniroma2.sag.kelp.data.example.Example; import it.uniroma2.sag.kelp.kernel.Kernel; import it.uniroma2.sag.kelp.kernel.KernelComposition; import com.fasterxml.jackson.annotation.JsonTypeName; /** * Normalization of a generic kernel K</br> * * Normalization formula: \(K(x,y) = \frac{K(x,y)}{\sqrt{(K(x,x) \cdot K(y,y))}}\) * * @author Simone Filice */ @JsonTypeName("norm") public class NormalizationKernel extends KernelComposition { public NormalizationKernel(Kernel kernelToNormalize) { this.baseKernel = kernelToNormalize; } public NormalizationKernel() { } @Override protected float kernelComputation(Example exA, Example exB) { Float qNormA = this.baseKernel.squaredNorm(exA); if (qNormA == 0) { return 0; } Float qNormB = this.baseKernel.squaredNorm(exB); if (qNormB == 0) { return 0; } float kernelVal = this.baseKernel.innerProduct(exA, exB); return (float) (kernelVal / (Math.sqrt(qNormA * qNormB))); } @Override public float squaredNorm(Example example) { return 1; } }