Java tutorial
package ipc; /** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import io.Writable; import io.WritableUtils; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.DataInputStream; import java.io.DataOutputStream; import java.io.IOException; import java.net.BindException; import java.net.InetAddress; import java.net.InetSocketAddress; import java.net.ServerSocket; import java.net.Socket; import java.net.SocketException; import java.net.UnknownHostException; import java.nio.ByteBuffer; import java.nio.channels.CancelledKeyException; import java.nio.channels.Channels; import java.nio.channels.ClosedChannelException; import java.nio.channels.ReadableByteChannel; import java.nio.channels.SelectionKey; import java.nio.channels.Selector; import java.nio.channels.ServerSocketChannel; import java.nio.channels.SocketChannel; import java.nio.channels.WritableByteChannel; import java.security.AccessControlException; import java.security.PrivilegedExceptionAction; import java.util.ArrayList; import java.util.Collections; import java.util.Iterator; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.Random; import java.util.concurrent.BlockingQueue; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.LinkedBlockingQueue; import javax.security.sasl.Sasl; import javax.security.sasl.SaslException; import javax.security.sasl.SaslServer; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import util.ReflectionUtils; import util.StringUtils; import conf.CommonConfigurationKeys; import conf.Configuration; /** An abstract IPC service. IPC calls take a single {@link Writable} as a * parameter, and return a {@link Writable} as their value. A service runs on * a port and is defined by a parameter class and a value class. * * @see Client */ public abstract class Server { private final boolean authorize; private boolean isSecurityEnabled; /** * The first four bytes of Hadoop RPC connections */ public static final ByteBuffer HEADER = ByteBuffer.wrap("hrpc".getBytes()); // 1 : Introduce ping and server does not throw away RPCs // 3 : Introduce the protocol into the RPC connection header // 4 : Introduced SASL security layer public static final byte CURRENT_VERSION = 4; /** * Initial and max size of response buffer */ static int INITIAL_RESP_BUF_SIZE = 10240; public static final Log LOG = LogFactory.getLog(Server.class); public static final Log auditLOG = LogFactory.getLog("SecurityLogger." + Server.class.getName()); private static final String AUTH_FAILED_FOR = "Auth failed for "; private static final String AUTH_SUCCESSFULL_FOR = "Auth successfull for "; private static final ThreadLocal<Server> SERVER = new ThreadLocal<Server>(); private static final Map<String, Class<?>> PROTOCOL_CACHE = new ConcurrentHashMap<String, Class<?>>(); static Class<?> getProtocolClass(String protocolName, Configuration conf) throws ClassNotFoundException { Class<?> protocol = PROTOCOL_CACHE.get(protocolName); if (protocol == null) { protocol = conf.getClassByName(protocolName); PROTOCOL_CACHE.put(protocolName, protocol); } return protocol; } /** Returns the server instance called under or null. May be called under * {@link #call(Writable, long)} implementations, and under {@link Writable} * methods of paramters and return values. Permits applications to access * the server context.*/ public static Server get() { return SERVER.get(); } /** This is set to Call object before Handler invokes an RPC and reset * after the call returns. */ private static final ThreadLocal<Call> CurCall = new ThreadLocal<Call>(); /** Returns the remote side ip address when invoked inside an RPC * Returns null incase of an error. */ public static InetAddress getRemoteIp() { Call call = CurCall.get(); if (call != null) { return call.connection.socket.getInetAddress(); } return null; } /** Returns remote address as a string when invoked inside an RPC. * Returns null in case of an error. */ public static String getRemoteAddress() { InetAddress addr = getRemoteIp(); return (addr == null) ? null : addr.getHostAddress(); } private String bindAddress; private int port; // port we listen on private int handlerCount; // number of handler threads private int readThreads; // number of read threads private Class<? extends Writable> paramClass; // class of call parameters private int maxIdleTime; // the maximum idle time after // which a client may be disconnected private int thresholdIdleConnections; // the number of idle connections // after which we will start // cleaning up idle // connections int maxConnectionsToNuke; // the max number of // connections to nuke //during a cleanup private Configuration conf; // private SecretManager<TokenIdentifier> secretManager; private int maxQueueSize; private final int maxRespSize; private int socketSendBufferSize; private final boolean tcpNoDelay; // if T then disable Nagle's Algorithm volatile private boolean running = true; // true while server runs private BlockingQueue<Call> callQueue; // queued calls private List<Connection> connectionList = Collections.synchronizedList(new LinkedList<Connection>()); //maintain a list //of client connections private Listener listener = null; private Responder responder = null; private int numConnections = 0; private Handler[] handlers = null; /** * A convenience method to bind to a given address and report * better exceptions if the address is not a valid host. * @param socket the socket to bind * @param address the address to bind to * @param backlog the number of connections allowed in the queue * @throws BindException if the address can't be bound * @throws UnknownHostException if the address isn't a valid host name * @throws IOException other random errors from bind */ public static void bind(ServerSocket socket, InetSocketAddress address, int backlog) throws IOException { try { socket.bind(address, backlog); } catch (BindException e) { BindException bindException = new BindException( "Problem binding to " + address + " : " + e.getMessage()); bindException.initCause(e); throw bindException; } catch (SocketException e) { // If they try to bind to a different host's address, give a better // error message. if ("Unresolved address".equals(e.getMessage())) { throw new UnknownHostException("Invalid hostname for server: " + address.getHostName()); } else { throw e; } } } /** A call queued for handling. */ private static class Call { private int id; // the client's call id private Writable param; // the parameter passed private Connection connection; // connection to client private long timestamp; // the time received when response is null // the time served when response is not null private ByteBuffer response; // the response for this call public Call(int id, Writable param, Connection connection) { this.id = id; this.param = param; this.connection = connection; this.timestamp = System.currentTimeMillis(); this.response = null; } @Override public String toString() { return param.toString() + " from " + connection.toString(); } public void setResponse(ByteBuffer response) { this.response = response; } } /** Listens on the socket. Creates jobs for the handler threads*/ private class Listener extends Thread { private ServerSocketChannel acceptChannel = null; //the accept channel private Selector selector = null; //the selector that we use for the server private Reader[] readers = null; private int currentReader = 0; private InetSocketAddress address; //the address we bind at private Random rand = new Random(); private long lastCleanupRunTime = 0; //the last time when a cleanup connec- //-tion (for idle connections) ran private long cleanupInterval = 10000; //the minimum interval between //two cleanup runs private int backlogLength = conf.getInt("ipc.server.listen.queue.size", 128); private ExecutorService readPool; public Listener() throws IOException { address = new InetSocketAddress(bindAddress, port); // Create a new server socket and set to non blocking mode acceptChannel = ServerSocketChannel.open(); acceptChannel.configureBlocking(false); // Bind the server socket to the local host and port bind(acceptChannel.socket(), address, backlogLength); port = acceptChannel.socket().getLocalPort(); //Could be an ephemeral port // create a selector; selector = Selector.open(); readers = new Reader[readThreads]; readPool = Executors.newFixedThreadPool(readThreads); for (int i = 0; i < readThreads; i++) { Selector readSelector = Selector.open(); Reader reader = new Reader(readSelector); readers[i] = reader; readPool.execute(reader); } // Register accepts on the server socket with the selector. acceptChannel.register(selector, SelectionKey.OP_ACCEPT); this.setName("IPC Server listener on " + port); this.setDaemon(true); } private class Reader implements Runnable { private volatile boolean adding = false; private Selector readSelector = null; Reader(Selector readSelector) { this.readSelector = readSelector; } public void run() { LOG.info("Starting SocketReader"); synchronized (this) { while (running) { SelectionKey key = null; try { readSelector.select(); while (adding) { this.wait(1000); } Iterator<SelectionKey> iter = readSelector.selectedKeys().iterator(); while (iter.hasNext()) { key = iter.next(); iter.remove(); if (key.isValid()) { if (key.isReadable()) { doRead(key); } } key = null; } } catch (InterruptedException e) { if (running) { // unexpected -- log it LOG.info(getName() + " caught: " + StringUtils.stringifyException(e)); } } catch (IOException ex) { LOG.error("Error in Reader", ex); } } } } /** * This gets reader into the state that waits for the new channel * to be registered with readSelector. If it was waiting in select() * the thread will be woken up, otherwise whenever select() is called * it will return even if there is nothing to read and wait * in while(adding) for finishAdd call */ public void startAdd() { adding = true; readSelector.wakeup(); } public synchronized SelectionKey registerChannel(SocketChannel channel) throws IOException { return channel.register(readSelector, SelectionKey.OP_READ); } public synchronized void finishAdd() { adding = false; this.notify(); } } /** cleanup connections from connectionList. Choose a random range * to scan and also have a limit on the number of the connections * that will be cleanedup per run. The criteria for cleanup is the time * for which the connection was idle. If 'force' is true then all * connections will be looked at for the cleanup. */ private void cleanupConnections(boolean force) { if (force || numConnections > thresholdIdleConnections) { long currentTime = System.currentTimeMillis(); if (!force && (currentTime - lastCleanupRunTime) < cleanupInterval) { return; } int start = 0; int end = numConnections - 1; if (!force) { start = rand.nextInt() % numConnections; end = rand.nextInt() % numConnections; int temp; if (end < start) { temp = start; start = end; end = temp; } } int i = start; int numNuked = 0; while (i <= end) { Connection c; synchronized (connectionList) { try { c = connectionList.get(i); } catch (Exception e) { return; } } if (c.timedOut(currentTime)) { if (LOG.isDebugEnabled()) LOG.debug(getName() + ": disconnecting client " + c.getHostAddress()); closeConnection(c); numNuked++; end--; c = null; if (!force && numNuked == maxConnectionsToNuke) break; } else i++; } lastCleanupRunTime = System.currentTimeMillis(); } } @Override public void run() { LOG.info(getName() + ": starting"); SERVER.set(Server.this); while (running) { SelectionKey key = null; try { getSelector().select(); Iterator<SelectionKey> iter = getSelector().selectedKeys().iterator(); while (iter.hasNext()) { key = iter.next(); iter.remove(); try { if (key.isValid()) { if (key.isAcceptable()) doAccept(key); } } catch (IOException e) { } key = null; } } catch (OutOfMemoryError e) { // we can run out of memory if we have too many threads // log the event and sleep for a minute and give // some thread(s) a chance to finish LOG.warn("Out of Memory in server select", e); closeCurrentConnection(key, e); cleanupConnections(true); try { Thread.sleep(60000); } catch (Exception ie) { } } catch (Exception e) { closeCurrentConnection(key, e); } cleanupConnections(false); } LOG.info("Stopping " + this.getName()); synchronized (this) { try { acceptChannel.close(); selector.close(); } catch (IOException e) { } selector = null; acceptChannel = null; // clean up all connections while (!connectionList.isEmpty()) { closeConnection(connectionList.remove(0)); } } } private void closeCurrentConnection(SelectionKey key, Throwable e) { if (key != null) { Connection c = (Connection) key.attachment(); if (c != null) { if (LOG.isDebugEnabled()) LOG.debug(getName() + ": disconnecting client " + c.getHostAddress()); closeConnection(c); c = null; } } } InetSocketAddress getAddress() { return (InetSocketAddress) acceptChannel.socket().getLocalSocketAddress(); } void doAccept(SelectionKey key) throws IOException, OutOfMemoryError { Connection c = null; ServerSocketChannel server = (ServerSocketChannel) key.channel(); SocketChannel channel; while ((channel = server.accept()) != null) { channel.configureBlocking(false); channel.socket().setTcpNoDelay(tcpNoDelay); Reader reader = getReader(); try { reader.startAdd(); SelectionKey readKey = reader.registerChannel(channel); c = new Connection(readKey, channel, System.currentTimeMillis()); readKey.attach(c); synchronized (connectionList) { connectionList.add(numConnections, c); numConnections++; } if (LOG.isDebugEnabled()) LOG.debug("Server connection from " + c.toString() + "; # active connections: " + numConnections + "; # queued calls: " + callQueue.size()); } finally { reader.finishAdd(); } } } void doRead(SelectionKey key) throws InterruptedException { int count = 0; Connection c = (Connection) key.attachment(); if (c == null) { return; } c.setLastContact(System.currentTimeMillis()); try { count = c.readAndProcess(); } catch (InterruptedException ieo) { LOG.info(getName() + ": readAndProcess caught InterruptedException", ieo); throw ieo; } catch (Exception e) { LOG.info(getName() + ": readAndProcess threw exception " + e + ". Count of bytes read: " + count, e); count = -1; //so that the (count < 0) block is executed } if (count < 0) { if (LOG.isDebugEnabled()) LOG.debug(getName() + ": disconnecting client " + c + ". Number of active connections: " + numConnections); closeConnection(c); c = null; } else { c.setLastContact(System.currentTimeMillis()); } } synchronized void doStop() { if (selector != null) { selector.wakeup(); Thread.yield(); } if (acceptChannel != null) { try { acceptChannel.socket().close(); } catch (IOException e) { LOG.info(getName() + ":Exception in closing listener socket. " + e); } } readPool.shutdown(); } synchronized Selector getSelector() { return selector; } // The method that will return the next reader to work with // Simplistic implementation of round robin for now Reader getReader() { currentReader = (currentReader + 1) % readers.length; return readers[currentReader]; } } // Sends responses of RPC back to clients. private class Responder extends Thread { private Selector writeSelector; private int pending; // connections waiting to register final static int PURGE_INTERVAL = 900000; // 15mins Responder() throws IOException { this.setName("IPC Server Responder"); this.setDaemon(true); writeSelector = Selector.open(); // create a selector pending = 0; } @Override public void run() { LOG.info(getName() + ": starting"); SERVER.set(Server.this); long lastPurgeTime = 0; // last check for old calls. while (running) { try { waitPending(); // If a channel is being registered, wait. writeSelector.select(PURGE_INTERVAL); Iterator<SelectionKey> iter = writeSelector.selectedKeys().iterator(); while (iter.hasNext()) { SelectionKey key = iter.next(); iter.remove(); try { if (key.isValid() && key.isWritable()) { doAsyncWrite(key); } } catch (IOException e) { LOG.info(getName() + ": doAsyncWrite threw exception " + e); } } long now = System.currentTimeMillis(); if (now < lastPurgeTime + PURGE_INTERVAL) { continue; } lastPurgeTime = now; // // If there were some calls that have not been sent out for a // long time, discard them. // LOG.debug("Checking for old call responses."); ArrayList<Call> calls; // get the list of channels from list of keys. synchronized (writeSelector.keys()) { calls = new ArrayList<Call>(writeSelector.keys().size()); iter = writeSelector.keys().iterator(); while (iter.hasNext()) { SelectionKey key = iter.next(); Call call = (Call) key.attachment(); if (call != null && key.channel() == call.connection.channel) { calls.add(call); } } } for (Call call : calls) { try { doPurge(call, now); } catch (IOException e) { LOG.warn("Error in purging old calls " + e); } } } catch (OutOfMemoryError e) { // // we can run out of memory if we have too many threads // log the event and sleep for a minute and give // some thread(s) a chance to finish // LOG.warn("Out of Memory in server select", e); try { Thread.sleep(60000); } catch (Exception ie) { } } catch (Exception e) { LOG.warn("Exception in Responder " + StringUtils.stringifyException(e)); } } LOG.info("Stopping " + this.getName()); } private void doAsyncWrite(SelectionKey key) throws IOException { Call call = (Call) key.attachment(); if (call == null) { return; } if (key.channel() != call.connection.channel) { throw new IOException("doAsyncWrite: bad channel"); } synchronized (call.connection.responseQueue) { if (processResponse(call.connection.responseQueue, false)) { try { key.interestOps(0); } catch (CancelledKeyException e) { /* The Listener/reader might have closed the socket. * We don't explicitly cancel the key, so not sure if this will * ever fire. * This warning could be removed. */ LOG.warn("Exception while changing ops : " + e); } } } } // // Remove calls that have been pending in the responseQueue // for a long time. // private void doPurge(Call call, long now) throws IOException { LinkedList<Call> responseQueue = call.connection.responseQueue; synchronized (responseQueue) { Iterator<Call> iter = responseQueue.listIterator(0); while (iter.hasNext()) { call = iter.next(); if (now > call.timestamp + PURGE_INTERVAL) { closeConnection(call.connection); break; } } } } // Processes one response. Returns true if there are no more pending // data for this channel. // private boolean processResponse(LinkedList<Call> responseQueue, boolean inHandler) throws IOException { boolean error = true; boolean done = false; // there is more data for this channel. int numElements = 0; Call call = null; try { synchronized (responseQueue) { // // If there are no items for this channel, then we are done // numElements = responseQueue.size(); if (numElements == 0) { error = false; return true; // no more data for this channel. } // // Extract the first call // call = responseQueue.removeFirst(); SocketChannel channel = call.connection.channel; if (LOG.isDebugEnabled()) { LOG.debug(getName() + ": responding to #" + call.id + " from " + call.connection); } // // Send as much data as we can in the non-blocking fashion // int numBytes = channelWrite(channel, call.response); if (numBytes < 0) { return true; } if (!call.response.hasRemaining()) { call.connection.decRpcCount(); if (numElements == 1) { // last call fully processes. done = true; // no more data for this channel. } else { done = false; // more calls pending to be sent. } if (LOG.isDebugEnabled()) { LOG.debug(getName() + ": responding to #" + call.id + " from " + call.connection + " Wrote " + numBytes + " bytes."); } } else { // // If we were unable to write the entire response out, then // insert in Selector queue. // call.connection.responseQueue.addFirst(call); if (inHandler) { // set the serve time when the response has to be sent later call.timestamp = System.currentTimeMillis(); incPending(); try { // Wakeup the thread blocked on select, only then can the call // to channel.register() complete. writeSelector.wakeup(); channel.register(writeSelector, SelectionKey.OP_WRITE, call); } catch (ClosedChannelException e) { //Its ok. channel might be closed else where. done = true; } finally { decPending(); } } if (LOG.isDebugEnabled()) { LOG.debug(getName() + ": responding to #" + call.id + " from " + call.connection + " Wrote partial " + numBytes + " bytes."); } } error = false; // everything went off well } } finally { if (error && call != null) { LOG.warn(getName() + ", call " + call + ": output error"); done = true; // error. no more data for this channel. closeConnection(call.connection); } } return done; } // // Enqueue a response from the application. // void doRespond(Call call) throws IOException { synchronized (call.connection.responseQueue) { call.connection.responseQueue.addLast(call); if (call.connection.responseQueue.size() == 1) { processResponse(call.connection.responseQueue, true); } } } private synchronized void incPending() { // call waiting to be enqueued. pending++; } private synchronized void decPending() { // call done enqueueing. pending--; notify(); } private synchronized void waitPending() throws InterruptedException { while (pending > 0) { wait(); } } } /** Reads calls from a connection and queues them for handling. */ public class Connection { private boolean rpcHeaderRead = false; // if initial rpc header is read private boolean headerRead = false; //if the connection header that //follows version is read. private SocketChannel channel; private ByteBuffer data; private ByteBuffer dataLengthBuffer; private LinkedList<Call> responseQueue; private volatile int rpcCount = 0; // number of outstanding rpcs private long lastContact; private int dataLength; private Socket socket; // Cache the remote host & port info so that even if the socket is // disconnected, we can say where it used to connect to. private String hostAddress; private int remotePort; ConnectionHeader header = new ConnectionHeader(); Class<?> protocol; boolean useSasl; SaslServer saslServer; // private AuthMethod authMethod; private boolean saslContextEstablished; private boolean skipInitialSaslHandshake; private ByteBuffer rpcHeaderBuffer; private ByteBuffer unwrappedData; private ByteBuffer unwrappedDataLengthBuffer; // UserGroupInformation user = null; // public UserGroupInformation attemptingUser = null; // user name before auth // Fake 'call' for failed authorization response private static final int AUTHROIZATION_FAILED_CALLID = -1; private final Call authFailedCall = new Call(AUTHROIZATION_FAILED_CALLID, null, this); private ByteArrayOutputStream authFailedResponse = new ByteArrayOutputStream(); // Fake 'call' for SASL context setup private static final int SASL_CALLID = -33; private final Call saslCall = new Call(SASL_CALLID, null, this); private final ByteArrayOutputStream saslResponse = new ByteArrayOutputStream(); public Connection(SelectionKey key, SocketChannel channel, long lastContact) { this.channel = channel; this.lastContact = lastContact; this.data = null; this.dataLengthBuffer = ByteBuffer.allocate(4); this.unwrappedData = null; this.unwrappedDataLengthBuffer = ByteBuffer.allocate(4); this.socket = channel.socket(); InetAddress addr = socket.getInetAddress(); if (addr == null) { this.hostAddress = "*Unknown*"; } else { this.hostAddress = addr.getHostAddress(); } this.remotePort = socket.getPort(); this.responseQueue = new LinkedList<Call>(); if (socketSendBufferSize != 0) { try { socket.setSendBufferSize(socketSendBufferSize); } catch (IOException e) { LOG.warn("Connection: unable to set socket send buffer size to " + socketSendBufferSize); } } } @Override public String toString() { return getHostAddress() + ":" + remotePort; } public String getHostAddress() { return hostAddress; } public void setLastContact(long lastContact) { this.lastContact = lastContact; } public long getLastContact() { return lastContact; } /* Return true if the connection has no outstanding rpc */ private boolean isIdle() { return rpcCount == 0; } /* Decrement the outstanding RPC count */ private void decRpcCount() { rpcCount--; } /* Increment the outstanding RPC count */ private void incRpcCount() { rpcCount++; } private boolean timedOut(long currentTime) { if (isIdle() && currentTime - lastContact > maxIdleTime) return true; return false; } // private UserGroupInformation getAuthorizedUgi(String authorizedId) // throws IOException { // if (authMethod == SaslRpcServer.AuthMethod.DIGEST) { // TokenIdentifier tokenId = SaslRpcServer.getIdentifier(authorizedId, // secretManager); // return tokenId.getUser(); // } else { // return UserGroupInformation.createRemoteUser(authorizedId); // } // } // private void saslReadAndProcess(byte[] saslToken) throws IOException, // InterruptedException { // if (!saslContextEstablished) { // byte[] replyToken = null; // try { // if (saslServer == null) { // switch (authMethod) { // case DIGEST: // if (secretManager == null) { // throw new AccessControlException( // "Server is not configured to do DIGEST authentication."); // } // saslServer = Sasl.createSaslServer(AuthMethod.DIGEST // .getMechanismName(), null, SaslRpcServer.SASL_DEFAULT_REALM, // SaslRpcServer.SASL_PROPS, new SaslDigestCallbackHandler( // secretManager, this)); // break; // default: // UserGroupInformation current = UserGroupInformation // .getCurrentUser(); // String fullName = current.getUserName(); // if (LOG.isDebugEnabled()) // LOG.debug("Kerberos principal name is " + fullName); // final String names[] = SaslRpcServer.splitKerberosName(fullName); // if (names.length != 3) { // throw new AccessControlException( // "Kerberos principal name does NOT have the expected " // + "hostname part: " + fullName); // } // current.doAs(new PrivilegedExceptionAction<Object>() { // @Override // public Object run() throws SaslException { // saslServer = Sasl.createSaslServer(AuthMethod.KERBEROS // .getMechanismName(), names[0], names[1], // SaslRpcServer.SASL_PROPS, new SaslGssCallbackHandler()); // return null; // } // }); // } //// if (saslServer == null) //// throw new AccessControlException( //// "Unable to find SASL server implementation for " //// + authMethod.getMechanismName()); //// if (LOG.isDebugEnabled()) //// LOG.debug("Created SASL server with mechanism = " //// + authMethod.getMechanismName()); // } // if (LOG.isDebugEnabled()) // LOG.debug("Have read input token of size " + saslToken.length // + " for processing by saslServer.evaluateResponse()"); // replyToken = saslServer.evaluateResponse(saslToken); // } catch (IOException e) { // IOException sendToClient = e; // Throwable cause = e; // while (cause != null) { // if (cause instanceof InvalidToken) { // sendToClient = (InvalidToken) cause; // break; // } // cause = cause.getCause(); // } // doSaslReply(SaslStatus.ERROR, null, sendToClient.getClass().getName(), // sendToClient.getLocalizedMessage()); // rpcMetrics.authenticationFailures.inc(); // String clientIP = this.toString(); // // attempting user could be null // auditLOG.warn(AUTH_FAILED_FOR + clientIP + ":" + attemptingUser, e); // throw e; // } // if (replyToken != null) { // if (LOG.isDebugEnabled()) // LOG.debug("Will send token of size " + replyToken.length // + " from saslServer."); // doSaslReply(SaslStatus.SUCCESS, new BytesWritable(replyToken), null, // null); // } // if (saslServer.isComplete()) { // if (LOG.isDebugEnabled()) { // LOG.debug("SASL server context established. Negotiated QoP is " // + saslServer.getNegotiatedProperty(Sasl.QOP)); // } // user = getAuthorizedUgi(saslServer.getAuthorizationID()); // LOG.info("SASL server successfully authenticated client: " + user); // rpcMetrics.authenticationSuccesses.inc(); // auditLOG.info(AUTH_SUCCESSFULL_FOR + user); // saslContextEstablished = true; // } // } else { // if (LOG.isDebugEnabled()) // LOG.debug("Have read input token of size " + saslToken.length // + " for processing by saslServer.unwrap()"); // byte[] plaintextData = saslServer // .unwrap(saslToken, 0, saslToken.length); // processUnwrappedData(plaintextData); // } // } // private void doSaslReply(SaslStatus status, Writable rv, // String errorClass, String error) throws IOException { // saslResponse.reset(); // DataOutputStream out = new DataOutputStream(saslResponse); // out.writeInt(status.state); // write status // if (status == SaslStatus.SUCCESS) { // rv.write(out); // } else { // WritableUtils.writeString(out, errorClass); // WritableUtils.writeString(out, error); // } // saslCall.setResponse(ByteBuffer.wrap(saslResponse.toByteArray())); // responder.doRespond(saslCall); // } private void disposeSasl() { if (saslServer != null) { try { saslServer.dispose(); } catch (SaslException ignored) { } } } public int readAndProcess() throws IOException, InterruptedException { while (true) { /* Read at most one RPC. If the header is not read completely yet * then iterate until we read first RPC or until there is no data left. */ int count = -1; if (dataLengthBuffer.remaining() > 0) { count = channelRead(channel, dataLengthBuffer); if (count < 0 || dataLengthBuffer.remaining() > 0) return count; } if (!rpcHeaderRead) { //Every connection is expected to send the header. if (rpcHeaderBuffer == null) { rpcHeaderBuffer = ByteBuffer.allocate(1); } count = channelRead(channel, rpcHeaderBuffer); if (count < 0 || rpcHeaderBuffer.remaining() > 0) { return count; } int version = rpcHeaderBuffer.get(0); // byte[] method = new byte[] {rpcHeaderBuffer.get(1)}; // authMethod = AuthMethod.read(new DataInputStream( // new ByteArrayInputStream(method))); // if (authMethod == null) { // throw new IOException("Unable to read authentication method"); // } // if (isSecurityEnabled && authMethod == AuthMethod.SIMPLE) { // AccessControlException ae = new AccessControlException( // "Authentication is required"); // setupResponse(authFailedResponse, authFailedCall, Status.FATAL, // null, ae.getClass().getName(), ae.getMessage()); // responder.doRespond(authFailedCall); // throw ae; // } // if (!isSecurityEnabled && authMethod != AuthMethod.SIMPLE) { // doSaslReply(SaslStatus.SUCCESS, new IntWritable( // SaslRpcServer.SWITCH_TO_SIMPLE_AUTH), null, null); // authMethod = AuthMethod.SIMPLE; // // client has already sent the initial Sasl message and we // // should ignore it. Both client and server should fall back // // to simple auth from now on. // skipInitialSaslHandshake = true; // } // if (authMethod != AuthMethod.SIMPLE) { // useSasl = true; // } dataLengthBuffer.flip(); if (!HEADER.equals(dataLengthBuffer) || version != CURRENT_VERSION) { //Warning is ok since this is not supposed to happen. LOG.warn("Incorrect header or version mismatch from " + hostAddress + ":" + remotePort + " got version " + version + " expected version " + CURRENT_VERSION); return -1; } dataLengthBuffer.clear(); rpcHeaderBuffer = null; rpcHeaderRead = true; continue; } if (data == null) { dataLengthBuffer.flip(); dataLength = dataLengthBuffer.getInt(); if (!useSasl && dataLength == Client.PING_CALL_ID) { dataLengthBuffer.clear(); return 0; //ping message } data = ByteBuffer.allocate(dataLength); } count = channelRead(channel, data); if (data.remaining() == 0) { dataLengthBuffer.clear(); data.flip(); if (skipInitialSaslHandshake) { data = null; skipInitialSaslHandshake = false; continue; } boolean isHeaderRead = headerRead; if (useSasl) { // saslReadAndProcess(data.array()); } else { processOneRpc(data.array()); } data = null; if (!isHeaderRead) { continue; } } return count; } } /// Reads the connection header following version private void processHeader(byte[] buf) throws IOException { DataInputStream in = new DataInputStream(new ByteArrayInputStream(buf)); header.readFields(in); try { String protocolClassName = header.getProtocol(); if (protocolClassName != null) { protocol = getProtocolClass(header.getProtocol(), conf); } } catch (ClassNotFoundException cnfe) { throw new IOException("Unknown protocol: " + header.getProtocol()); } // UserGroupInformation protocolUser = header.getUgi(); // if (!useSasl) { // user = protocolUser; // if (user != null) { // user.setAuthenticationMethod(AuthMethod.SIMPLE.authenticationMethod); // } // } else { // // user is authenticated // user.setAuthenticationMethod(authMethod.authenticationMethod); // //Now we check if this is a proxy user case. If the protocol user is // //different from the 'user', it is a proxy user scenario. However, // //this is not allowed if user authenticated with DIGEST. // if ((protocolUser != null) // && (!protocolUser.getUserName().equals(user.getUserName()))) { // if (authMethod == AuthMethod.DIGEST) { // // Not allowed to doAs if token authentication is used // throw new AccessControlException("Authenticated user (" + user // + ") doesn't match what the client claims to be (" // + protocolUser + ")"); // } else { // // Effective user can be different from authenticated user // // for simple auth or kerberos auth // // The user is the real user. Now we create a proxy user // UserGroupInformation realUser = user; // user = UserGroupInformation.createProxyUser(protocolUser // .getUserName(), realUser); // // Now the user is a proxy user, set Authentication method Proxy. // user.setAuthenticationMethod(AuthenticationMethod.PROXY); // } // } // } } private void processUnwrappedData(byte[] inBuf) throws IOException, InterruptedException { ReadableByteChannel ch = Channels.newChannel(new ByteArrayInputStream(inBuf)); // Read all RPCs contained in the inBuf, even partial ones while (true) { int count = -1; if (unwrappedDataLengthBuffer.remaining() > 0) { count = channelRead(ch, unwrappedDataLengthBuffer); if (count <= 0 || unwrappedDataLengthBuffer.remaining() > 0) return; } if (unwrappedData == null) { unwrappedDataLengthBuffer.flip(); int unwrappedDataLength = unwrappedDataLengthBuffer.getInt(); if (unwrappedDataLength == Client.PING_CALL_ID) { if (LOG.isDebugEnabled()) LOG.debug("Received ping message"); unwrappedDataLengthBuffer.clear(); continue; // ping message } unwrappedData = ByteBuffer.allocate(unwrappedDataLength); } count = channelRead(ch, unwrappedData); if (count <= 0 || unwrappedData.remaining() > 0) return; if (unwrappedData.remaining() == 0) { unwrappedDataLengthBuffer.clear(); unwrappedData.flip(); processOneRpc(unwrappedData.array()); unwrappedData = null; } } } private void processOneRpc(byte[] buf) throws IOException, InterruptedException { if (headerRead) { processData(buf); } else { processHeader(buf); headerRead = true; if (!authorizeConnection()) { throw new AccessControlException("Connection from " + this + " for protocol " + header.getProtocol() + " is unauthorized for user "); } } } private void processData(byte[] buf) throws IOException, InterruptedException { DataInputStream dis = new DataInputStream(new ByteArrayInputStream(buf)); int id = dis.readInt(); // try to read an id if (LOG.isDebugEnabled()) LOG.debug(" got #" + id); Writable param = ReflectionUtils.newInstance(paramClass, conf);//read param param.readFields(dis); Call call = new Call(id, param, this); callQueue.put(call); // queue the call; maybe blocked here incRpcCount(); // Increment the rpc count } private boolean authorizeConnection() throws IOException { // try { // // If auth method is DIGEST, the token was obtained by the // // real user for the effective user, therefore not required to // // authorize real user. doAs is allowed only for simple or kerberos // // authentication // if (user != null && user.getRealUser() != null // && (authMethod != AuthMethod.DIGEST)) { // ProxyUsers.authorize(user, this.getHostAddress(), conf); // } // authorize(user, header); // if (LOG.isDebugEnabled()) { // LOG.debug("Successfully authorized " + header); // } // } catch (AuthorizationException ae) { // setupResponse(authFailedResponse, authFailedCall, Status.FATAL, null, // ae.getClass().getName(), ae.getMessage()); // responder.doRespond(authFailedCall); // return false; // } return true; } private synchronized void close() throws IOException { disposeSasl(); data = null; dataLengthBuffer = null; if (!channel.isOpen()) return; try { socket.shutdownOutput(); } catch (Exception e) { LOG.warn("Ignoring socket shutdown exception"); } if (channel.isOpen()) { try { channel.close(); } catch (Exception e) { } } try { socket.close(); } catch (Exception e) { } } } /** Handles queued calls . */ private class Handler extends Thread { public Handler(int instanceNumber) { this.setDaemon(true); this.setName("IPC Server handler " + instanceNumber + " on " + port); } @Override public void run() { LOG.info(getName() + ": starting"); SERVER.set(Server.this); ByteArrayOutputStream buf = new ByteArrayOutputStream(INITIAL_RESP_BUF_SIZE); while (running) { try { final Call call = callQueue.take(); // pop the queue; maybe blocked here if (LOG.isDebugEnabled()) LOG.debug(getName() + ": has #" + call.id + " from " + call.connection); String errorClass = null; String error = null; Writable value = null; CurCall.set(call); try { // Make the call as the user via Subject.doAs, thus associating // the call with the Subject // if (call.connection.user == null) { value = call(call.connection.protocol, call.param, call.timestamp); // } else { // value = // call.connection.user.doAs // (new PrivilegedExceptionAction<Writable>() { // @Override // public Writable run() throws Exception { // // make the call // return call(call.connection.protocol, // call.param, call.timestamp); // // } // } // ); // } } catch (Throwable e) { LOG.info(getName() + ", call " + call + ": error: " + e, e); errorClass = e.getClass().getName(); error = StringUtils.stringifyException(e); // Remove redundant error class name from the beginning of the stack trace String exceptionHdr = errorClass + ": "; if (error.startsWith(exceptionHdr)) { error = error.substring(exceptionHdr.length()); } } CurCall.set(null); synchronized (call.connection.responseQueue) { // setupResponse() needs to be sync'ed together with // responder.doResponse() since setupResponse may use // SASL to encrypt response data and SASL enforces // its own message ordering. setupResponse(buf, call, (error == null) ? Status.SUCCESS : Status.ERROR, value, errorClass, error); // Discard the large buf and reset it back to smaller size // to free up heap if (buf.size() > maxRespSize) { LOG.warn("Large response size " + buf.size() + " for call " + call.toString()); buf = new ByteArrayOutputStream(INITIAL_RESP_BUF_SIZE); } responder.doRespond(call); } } catch (InterruptedException e) { if (running) { // unexpected -- log it LOG.info(getName() + " caught: " + StringUtils.stringifyException(e)); } } catch (Exception e) { LOG.info(getName() + " caught: " + StringUtils.stringifyException(e)); } } LOG.info(getName() + ": exiting"); } } protected Server(String bindAddress, int port, Class<? extends Writable> paramClass, int handlerCount, Configuration conf) throws IOException { this(bindAddress, port, paramClass, handlerCount, conf, Integer.toString(port)); } /** Constructs a server listening on the named port and address. Parameters passed must * be of the named class. The <code>handlerCount</handlerCount> determines * the number of handler threads that will be used to process calls. * */ @SuppressWarnings("unchecked") protected Server(String bindAddress, int port, Class<? extends Writable> paramClass, int handlerCount, Configuration conf, String serverName) throws IOException { this.bindAddress = bindAddress; this.conf = conf; this.port = port; this.paramClass = paramClass; this.handlerCount = handlerCount; this.socketSendBufferSize = 0; this.maxQueueSize = handlerCount * conf.getInt(CommonConfigurationKeys.IPC_SERVER_HANDLER_QUEUE_SIZE_KEY, CommonConfigurationKeys.IPC_SERVER_HANDLER_QUEUE_SIZE_DEFAULT); this.maxRespSize = conf.getInt(CommonConfigurationKeys.IPC_SERVER_RPC_MAX_RESPONSE_SIZE_KEY, CommonConfigurationKeys.IPC_SERVER_RPC_MAX_RESPONSE_SIZE_DEFAULT); this.readThreads = conf.getInt(CommonConfigurationKeys.IPC_SERVER_RPC_READ_THREADS_KEY, CommonConfigurationKeys.IPC_SERVER_RPC_READ_THREADS_DEFAULT); this.callQueue = new LinkedBlockingQueue<Call>(maxQueueSize); this.maxIdleTime = 2 * conf.getInt("ipc.client.connection.maxidletime", 1000); this.maxConnectionsToNuke = conf.getInt("ipc.client.kill.max", 10); this.thresholdIdleConnections = conf.getInt("ipc.client.idlethreshold", 4000); // this.secretManager = (SecretManager<TokenIdentifier>) secretManager; this.authorize = conf.getBoolean(CommonConfigurationKeys.HADOOP_SECURITY_AUTHORIZATION, false); // this.isSecurityEnabled = UserGroupInformation.isSecurityEnabled(); this.isSecurityEnabled = false; // Start the listener here and let it bind to the port listener = new Listener(); this.port = listener.getAddress().getPort(); this.tcpNoDelay = conf.getBoolean("ipc.server.tcpnodelay", false); // Create the responder here responder = new Responder(); } private void closeConnection(Connection connection) { synchronized (connectionList) { if (connectionList.remove(connection)) numConnections--; } try { connection.close(); } catch (IOException e) { } } /** * Setup response for the IPC Call. * * @param response buffer to serialize the response into * @param call {@link Call} to which we are setting up the response * @param status {@link Status} of the IPC call * @param rv return value for the IPC Call, if the call was successful * @param errorClass error class, if the the call failed * @param error error message, if the call failed * @throws IOException */ private void setupResponse(ByteArrayOutputStream response, Call call, Status status, Writable rv, String errorClass, String error) throws IOException { response.reset(); DataOutputStream out = new DataOutputStream(response); out.writeInt(call.id); // write call id out.writeInt(status.state); // write status if (status == Status.SUCCESS) { rv.write(out); } else { WritableUtils.writeString(out, errorClass); WritableUtils.writeString(out, error); } wrapWithSasl(response, call); call.setResponse(ByteBuffer.wrap(response.toByteArray())); } private void wrapWithSasl(ByteArrayOutputStream response, Call call) throws IOException { if (call.connection.useSasl) { byte[] token = response.toByteArray(); // synchronization may be needed since there can be multiple Handler // threads using saslServer to wrap responses. synchronized (call.connection.saslServer) { token = call.connection.saslServer.wrap(token, 0, token.length); } if (LOG.isDebugEnabled()) LOG.debug("Adding saslServer wrapped token of size " + token.length + " as call response."); response.reset(); DataOutputStream saslOut = new DataOutputStream(response); saslOut.writeInt(token.length); saslOut.write(token, 0, token.length); } } Configuration getConf() { return conf; } /** for unit testing only, should be called before server is started */ void disableSecurity() { this.isSecurityEnabled = false; } /** for unit testing only, should be called before server is started */ void enableSecurity() { this.isSecurityEnabled = true; } /** Sets the socket buffer size used for responding to RPCs */ public void setSocketSendBufSize(int size) { this.socketSendBufferSize = size; } /** Starts the service. Must be called before any calls will be handled. */ public synchronized void start() throws IOException { responder.start(); listener.start(); handlers = new Handler[handlerCount]; for (int i = 0; i < handlerCount; i++) { handlers[i] = new Handler(i); handlers[i].start(); } } /** Stops the service. No new calls will be handled after this is called. */ public synchronized void stop() { LOG.info("Stopping server on " + port); running = false; if (handlers != null) { for (int i = 0; i < handlerCount; i++) { if (handlers[i] != null) { handlers[i].interrupt(); } } } listener.interrupt(); listener.doStop(); responder.interrupt(); notifyAll(); } /** Wait for the server to be stopped. * Does not wait for all subthreads to finish. * See {@link #stop()}. */ public synchronized void join() throws InterruptedException { while (running) { wait(); } } /** * Return the socket (ip+port) on which the RPC server is listening to. * @return the socket (ip+port) on which the RPC server is listening to. */ public synchronized InetSocketAddress getListenerAddress() { return listener.getAddress(); } /** * Called for each call. * @deprecated Use {@link #call(Class, Writable, long)} instead */ @Deprecated public Writable call(Writable param, long receiveTime) throws IOException { return call(null, param, receiveTime); } /** Called for each call. */ public abstract Writable call(Class<?> protocol, Writable param, long receiveTime) throws IOException; /** * Authorize the incoming client connection. * * @param user client user * @param connection incoming connection * @throws AuthorizationException when the client isn't authorized to talk the protocol */ // public void authorize(UserGroupInformation user, // ConnectionHeader connection // ) throws AuthorizationException { // if (authorize) { // Class<?> protocol = null; // try { // protocol = getProtocolClass(connection.getProtocol(), getConf()); // } catch (ClassNotFoundException cfne) { // throw new AuthorizationException("Unknown protocol: " + // connection.getProtocol()); // } // ServiceAuthorizationManager.authorize(user, protocol); // } // } /** * The number of open RPC conections * @return the number of open rpc connections */ public int getNumOpenConnections() { return numConnections; } /** * The number of rpc calls in the queue. * @return The number of rpc calls in the queue. */ public int getCallQueueLen() { return callQueue.size(); } /** * When the read or write buffer size is larger than this limit, i/o will be * done in chunks of this size. Most RPC requests and responses would be * be smaller. */ private static int NIO_BUFFER_LIMIT = 8 * 1024; //should not be more than 64KB. /** * This is a wrapper around {@link WritableByteChannel#write(ByteBuffer)}. * If the amount of data is large, it writes to channel in smaller chunks. * This is to avoid jdk from creating many direct buffers as the size of * buffer increases. This also minimizes extra copies in NIO layer * as a result of multiple write operations required to write a large * buffer. * * @see WritableByteChannel#write(ByteBuffer) */ private int channelWrite(WritableByteChannel channel, ByteBuffer buffer) throws IOException { int count = (buffer.remaining() <= NIO_BUFFER_LIMIT) ? channel.write(buffer) : channelIO(null, channel, buffer); return count; } /** * This is a wrapper around {@link ReadableByteChannel#read(ByteBuffer)}. * If the amount of data is large, it writes to channel in smaller chunks. * This is to avoid jdk from creating many direct buffers as the size of * ByteBuffer increases. There should not be any performance degredation. * * @see ReadableByteChannel#read(ByteBuffer) */ private int channelRead(ReadableByteChannel channel, ByteBuffer buffer) throws IOException { int count = (buffer.remaining() <= NIO_BUFFER_LIMIT) ? channel.read(buffer) : channelIO(channel, null, buffer); return count; } /** * Helper for {@link #channelRead(ReadableByteChannel, ByteBuffer)} * and {@link #channelWrite(WritableByteChannel, ByteBuffer)}. Only * one of readCh or writeCh should be non-null. * * @see #channelRead(ReadableByteChannel, ByteBuffer) * @see #channelWrite(WritableByteChannel, ByteBuffer) */ private static int channelIO(ReadableByteChannel readCh, WritableByteChannel writeCh, ByteBuffer buf) throws IOException { int originalLimit = buf.limit(); int initialRemaining = buf.remaining(); int ret = 0; while (buf.remaining() > 0) { try { int ioSize = Math.min(buf.remaining(), NIO_BUFFER_LIMIT); buf.limit(buf.position() + ioSize); ret = (readCh == null) ? writeCh.write(buf) : readCh.read(buf); if (ret < ioSize) { break; } } finally { buf.limit(originalLimit); } } int nBytes = initialRemaining - buf.remaining(); return (nBytes > 0) ? nBytes : ret; } }