io.seldon.recommendation.RecentCategoryItemsRecommender.java Source code

Java tutorial

Introduction

Here is the source code for io.seldon.recommendation.RecentCategoryItemsRecommender.java

Source

/*
 * Seldon -- open source prediction engine
 * =======================================
 * Copyright 2011-2015 Seldon Technologies Ltd and Rummble Ltd (http://www.seldon.io/)
 *
 **********************************************************************************************
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at       
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 ********************************************************************************************** 
*/
package io.seldon.recommendation;

import io.seldon.clustering.recommender.BaseItemCategoryRecommender;
import io.seldon.clustering.recommender.ItemRecommendationAlgorithm;
import io.seldon.clustering.recommender.ItemRecommendationResultSet;
import io.seldon.clustering.recommender.RecommendationContext;
import io.seldon.general.ItemStorage;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;

import org.apache.commons.lang.StringUtils;
import org.apache.log4j.Logger;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

/**
 * @author firemanphil
 *         Date: 22/02/15
 *         Time: 11:50
 */
@Component
public class RecentCategoryItemsRecommender extends BaseItemCategoryRecommender
        implements ItemRecommendationAlgorithm {

    private static final String name = RecentCategoryItemsRecommender.class.getSimpleName();
    private static Logger logger = Logger.getLogger(RecentCategoryItemsRecommender.class.getName());
    private final ItemStorage itemStorage;

    @Autowired
    public RecentCategoryItemsRecommender(ItemStorage itemStorage) {
        this.itemStorage = itemStorage;
    }

    @Override
    public ItemRecommendationResultSet recommend(String client, Long user, Set<Integer> dimensions,
            int maxRecsCount, RecommendationContext ctxt, List<Long> recentItemInteractions) {
        HashMap<Long, Double> recommendations = new HashMap<>();
        Set<Long> exclusions;

        if (ctxt.getMode() == RecommendationContext.MODE.INCLUSION) {
            logger.warn("Can't run RecentICategorytemsRecommender in inclusion context mode");
            return new ItemRecommendationResultSet(name);
        } else {
            exclusions = ctxt.getContextItems();
        }
        Integer dimId = getDimensionForAttrName(ctxt.getCurrentItem(), client, ctxt);
        if (dimId != null) {
            Collection<Long> recList = itemStorage.retrieveRecentlyAddedItemsTwoDimensions(client,
                    maxRecsCount + exclusions.size(), dimensions, dimId).getItems();
            if (recList.size() > 0) {
                double scoreIncr = 1.0 / (double) recList.size();
                int count = 0;
                for (Long item : recList) {
                    if (count >= maxRecsCount)
                        break;
                    else if (!exclusions.contains(item))
                        recommendations.put(item, 1.0 - (count++ * scoreIncr));
                }
                List<ItemRecommendationResultSet.ItemRecommendationResult> results = new ArrayList<>();
                for (Map.Entry<Long, Double> entry : recommendations.entrySet()) {
                    results.add(new ItemRecommendationResultSet.ItemRecommendationResult(entry.getKey(),
                            entry.getValue().floatValue()));
                }
                if (logger.isDebugEnabled())
                    logger.debug("Recent items algorithm returned " + recommendations.size() + " items");
                return new ItemRecommendationResultSet(results, name);
            } else {
                logger.warn("No items returned for recent items of dimension " + StringUtils.join(dimensions, ",")
                        + " for " + client);
            }
        } else
            logger.info("Can't get dimension for item " + ctxt.getCurrentItem());

        return new ItemRecommendationResultSet(Collections.EMPTY_LIST, name);
    }

    @Override
    public String name() {
        return name;
    }
}