Java tutorial
/* * Seldon -- open source prediction engine * ======================================= * * Copyright 2011-2015 Seldon Technologies Ltd and Rummble Ltd (http://www.seldon.io/) * * ******************************************************************************************** * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ******************************************************************************************** */ package io.seldon.recommendation.combiner; import io.seldon.clustering.recommender.ItemRecommendationResultSet; import io.seldon.recommendation.RecommendationPeer; import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import java.util.List; import java.util.Map; import org.apache.commons.lang3.StringUtils; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.beans.factory.annotation.Value; import org.springframework.stereotype.Component; /** * * Combine recommendations from algorithms based on their rank in the list of recs. * * @author firemanphil * Date: 23/02/15 * Time: 11:00 */ @Component public class RankSumCombiner implements AlgorithmResultsCombiner { private final int numResultSetsToUse; private final boolean strict; @Autowired public RankSumCombiner(@Value("${combiner.ranksum.maxResultSets:2}") int numResultSetsToUse, @Value("${combiner.ranksum.strict:false}") boolean strict) { this.numResultSetsToUse = numResultSetsToUse; this.strict = strict; } @Override public boolean isEnoughResults(int numRecsRequired, List<RecommendationPeer.RecResultContext> resultsSets) { int numValidSets = 0; for (RecommendationPeer.RecResultContext set : resultsSets) { if (set.resultSet.getResults().size() >= numRecsRequired) { numValidSets++; } } return numValidSets >= numResultSetsToUse; } @Override public RecommendationPeer.RecResultContext combine(int numRecsRequired, List<RecommendationPeer.RecResultContext> resultsSets) { Map<Long, String> item_recommender_lookup = new HashMap<>(); Map<ItemRecommendationResultSet.ItemRecommendationResult, Integer> rankSumMap = new HashMap<>(); List<RecommendationPeer.RecResultContext> validResultSets = new ArrayList<>(); List<String> validResultsAlgKeys = new ArrayList<>(); for (RecommendationPeer.RecResultContext set : resultsSets) { if ((strict && set.resultSet.getResults().size() >= numRecsRequired) || (!strict && set.resultSet.getResults().size() > 0)) { validResultSets.add(set); validResultsAlgKeys.add(set.algKey); } } for (int i = 0; i < numRecsRequired; i++) { for (RecommendationPeer.RecResultContext validResultSet : validResultSets) { List<ItemRecommendationResultSet.ItemRecommendationResult> ordered = validResultSet.resultSet .getResults(); Collections.sort(ordered, Collections.reverseOrder()); if (i < ordered.size()) { final ItemRecommendationResultSet.ItemRecommendationResult itemRecommendationResult = ordered .get(i); Integer rankSum = rankSumMap.get(itemRecommendationResult); if (rankSum == null) rankSum = 0; rankSum += (numRecsRequired - i); rankSumMap.put(itemRecommendationResult, rankSum); { // capture the recommender used for item String original_value = item_recommender_lookup.put(itemRecommendationResult.item, validResultSet.resultSet.getRecommenderName()); if (original_value != null) { item_recommender_lookup.put(itemRecommendationResult.item, original_value); } } } } } List<ItemRecommendationResultSet.ItemRecommendationResult> orderedResults = new ArrayList<>(); for (Map.Entry<ItemRecommendationResultSet.ItemRecommendationResult, Integer> entry : rankSumMap .entrySet()) { Float newScore = entry.getValue().floatValue(); Long item = entry.getKey().item; ItemRecommendationResultSet.ItemRecommendationResult result = new ItemRecommendationResultSet.ItemRecommendationResult( item, newScore); orderedResults.add(result); } Collections.sort(orderedResults, Collections.reverseOrder()); RecommendationPeer.RecResultContext recResultContext = new RecommendationPeer.RecResultContext( new ItemRecommendationResultSet(orderedResults, StringUtils.join(validResultsAlgKeys, ':')), StringUtils.join(validResultsAlgKeys, ':')); recResultContext.item_recommender_lookup = item_recommender_lookup; return recResultContext; } }