Java tutorial
/* * Seldon -- open source prediction engine * ======================================= * * Copyright 2011-2015 Seldon Technologies Ltd and Rummble Ltd (http://www.seldon.io/) * * ******************************************************************************************** * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ******************************************************************************************** */ package io.seldon.mf; import io.seldon.clustering.recommender.ItemRecommendationAlgorithm; import io.seldon.clustering.recommender.ItemRecommendationResultSet; import io.seldon.clustering.recommender.ItemRecommendationResultSet.ItemRecommendationResult; import io.seldon.clustering.recommender.RecommendationContext; import java.util.ArrayList; import java.util.Collections; import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.Set; import org.apache.commons.math.linear.ArrayRealVector; import org.apache.commons.math.linear.RealVector; import org.apache.log4j.Logger; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import com.google.common.collect.Ordering; @Component public class RecentMfRecommender implements ItemRecommendationAlgorithm { private static Logger logger = Logger.getLogger(RecentMfRecommender.class.getName()); private static final String name = RecentMfRecommender.class.getSimpleName(); private static final String RECENT_ACTIONS_PROPERTY_NAME = "io.seldon.algorithm.general.numrecentactionstouse"; private final MfFeaturesManager store; @Autowired public RecentMfRecommender(MfFeaturesManager store) { this.store = store; } @Override public ItemRecommendationResultSet recommend(String client, Long user, Set<Integer> dimensions, int maxRecsCount, RecommendationContext ctxt, List<Long> recentItemInteractions) { RecommendationContext.OptionsHolder opts = ctxt.getOptsHolder(); int numRecentActionsToUse = opts.getIntegerOption(RECENT_ACTIONS_PROPERTY_NAME); MfFeaturesManager.ClientMfFeaturesStore clientStore = this.store.getClientStore(client, ctxt.getOptsHolder()); if (clientStore == null) { logger.debug("Couldn't find a matrix factorization store for this client"); return new ItemRecommendationResultSet(Collections.<ItemRecommendationResult>emptyList(), name); } List<Long> itemsToScore; if (recentItemInteractions.size() > numRecentActionsToUse) { if (logger.isDebugEnabled()) logger.debug("Limiting recent items for score to size " + numRecentActionsToUse + " from present " + recentItemInteractions.size()); itemsToScore = recentItemInteractions.subList(0, numRecentActionsToUse); } else itemsToScore = new ArrayList<>(recentItemInteractions); if (logger.isDebugEnabled()) logger.debug("Recent items of size " + itemsToScore.size() + " -> " + itemsToScore.toString()); double[] userVector; if (clientStore.productFeaturesInverse != null) { //fold in user data from their recent history of item interactions logger.debug("Creating user vector by folding in features"); userVector = foldInUser(itemsToScore, clientStore.productFeaturesInverse, clientStore.idMap); } else { logger.debug("Creating user vector by averaging features"); userVector = createAvgProductVector(itemsToScore, clientStore.productFeatures); } Set<ItemRecommendationResult> recs = new HashSet<>(); if (ctxt.getMode() == RecommendationContext.MODE.INCLUSION) { // special case for INCLUSION as it's easier on the cpu. for (Long item : ctxt.getContextItems()) { if (!recentItemInteractions.contains(item)) { float[] features = clientStore.productFeatures.get(item); if (features != null) recs.add(new ItemRecommendationResult(item, dot(features, userVector))); } } } else { for (Map.Entry<Long, float[]> productFeatures : clientStore.productFeatures.entrySet()) { Long item = productFeatures.getKey().longValue(); if (!recentItemInteractions.contains(item)) { recs.add(new ItemRecommendationResult(item, dot(productFeatures.getValue(), userVector))); } } } List<ItemRecommendationResult> recsList = Ordering.natural().greatestOf(recs, maxRecsCount); if (logger.isDebugEnabled()) logger.debug("Created " + recsList.size() + " recs"); return new ItemRecommendationResultSet(recsList, name); } public double[] createAvgProductVector(List<Long> recentitemInteractions, Map<Long, float[]> productFeatures) { int numLatentFactors = productFeatures.values().iterator().next().length; double[] userFeatures = new double[numLatentFactors]; for (Long item : recentitemInteractions) { float[] productFactors = productFeatures.get(item); if (productFactors != null) { for (int feature = 0; feature < numLatentFactors; feature++) { userFeatures[feature] += productFactors[feature]; } } } RealVector userFeaturesAsVector = new ArrayRealVector(userFeatures); RealVector normalised = userFeaturesAsVector.mapDivide(userFeaturesAsVector.getL1Norm()); return normalised.getData(); } /** * http://www.slideshare.net/fullscreen/srowen/matrix-factorization/16 * @param recentitemInteractions * @param productFeaturesInverse * @param idMap * @return */ public double[] foldInUser(List<Long> recentitemInteractions, double[][] productFeaturesInverse, Map<Long, Integer> idMap) { int numLatentFactors = productFeaturesInverse[0].length; double[] userFeatures = new double[numLatentFactors]; for (Long item : recentitemInteractions) { Integer id = idMap.get(item); if (id != null) { for (int feature = 0; feature < numLatentFactors; feature++) { userFeatures[feature] += productFeaturesInverse[id][feature]; } } } return userFeatures; } private static float dot(float[] vec1, double[] vec2) { float sum = 0; for (int i = 0; i < vec1.length; i++) { sum += vec1[i] * vec2[i]; } return sum; } @Override public String name() { return name; } }