Java tutorial
/* * Seldon -- open source prediction engine * ======================================= * * Copyright 2011-2015 Seldon Technologies Ltd and Rummble Ltd (http://www.seldon.io/) * * ******************************************************************************************** * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ******************************************************************************************** */ package io.seldon.clustering.recommender; import io.seldon.clustering.recommender.jdo.JdoCountRecommenderUtils; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.Map; import java.util.Set; import org.apache.log4j.Logger; import org.springframework.beans.factory.annotation.Autowired; /** * @author firemanphil * Date: 03/12/14 * Time: 14:14 */ public class BaseClusterCountsRecommender { private static final String LONG_TERM_WEIGHT_OPTION_NAME = "io.seldon.algorithm.clusters.longtermweight"; private static final String SHORT_TERM_WEIGHT_OPTION_NAME = "io.seldon.algorithm.clusters.shorttermweight"; private static final String MIN_ITEMS_FOR_VALID_CLUSTER_OPTION_NAME = "io.seldon.algorithm.clusters.minnumberitemsforvalidclusterresult"; private static final String DECAY_RATE_OPTION_NAME = "io.seldon.algorithm.clusters.decayratesecs"; private static Logger logger = Logger.getLogger(BaseClusterCountsRecommender.class.getName()); @Autowired JdoCountRecommenderUtils cUtils; public ItemRecommendationResultSet recommend(String recommenderName, String recommenderType, String client, RecommendationContext ctxt, Long user, int dimensionId, int maxRecsCount) { CountRecommender r = cUtils.getCountRecommender(client); RecommendationContext.OptionsHolder optionsHolder = ctxt.getOptsHolder(); if (r != null) { long t1 = System.currentTimeMillis(); Set<Long> exclusions = Collections.emptySet(); if (ctxt.getMode() == RecommendationContext.MODE.EXCLUSION) { exclusions = ctxt.getContextItems(); } boolean includeShortTermClusters = recommenderType.equals("CLUSTER_COUNTS_DYNAMIC"); Double longTermWeight = optionsHolder.getDoubleOption(LONG_TERM_WEIGHT_OPTION_NAME); Double shortTermWeight = optionsHolder.getDoubleOption(SHORT_TERM_WEIGHT_OPTION_NAME); Integer minClusterItems = optionsHolder.getIntegerOption(MIN_ITEMS_FOR_VALID_CLUSTER_OPTION_NAME); Double decayRate = optionsHolder.getDoubleOption(DECAY_RATE_OPTION_NAME); Map<Long, Double> recommendations = r.recommend(recommenderType, user, null, dimensionId, maxRecsCount, exclusions, includeShortTermClusters, longTermWeight, shortTermWeight, decayRate, minClusterItems); long t2 = System.currentTimeMillis(); logger.debug("Recommendation via cluster counts for user " + user + " took " + (t2 - t1) + " and got back " + recommendations.size() + " recommednations"); List<ItemRecommendationResultSet.ItemRecommendationResult> results = new ArrayList<>(); for (Map.Entry<Long, Double> entry : recommendations.entrySet()) { results.add(new ItemRecommendationResultSet.ItemRecommendationResult(entry.getKey(), entry.getValue().floatValue())); } return new ItemRecommendationResultSet(results, recommenderName); } else { return new ItemRecommendationResultSet( Collections.<ItemRecommendationResultSet.ItemRecommendationResult>emptyList(), recommenderName); } } }