io.druid.server.coordinator.CostBalancerStrategy.java Source code

Java tutorial

Introduction

Here is the source code for io.druid.server.coordinator.CostBalancerStrategy.java

Source

/*
 * Licensed to Metamarkets Group Inc. (Metamarkets) under one
 * or more contributor license agreements. See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. Metamarkets licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied. See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package io.druid.server.coordinator;

import com.google.common.base.Predicates;
import com.google.common.collect.Iterables;
import com.google.common.collect.Lists;
import com.google.common.util.concurrent.Futures;
import com.google.common.util.concurrent.ListenableFuture;
import com.google.common.util.concurrent.ListeningExecutorService;
import com.metamx.emitter.EmittingLogger;

import io.druid.java.util.common.Pair;
import io.druid.timeline.DataSegment;
import org.apache.commons.math3.util.FastMath;
import org.joda.time.Interval;

import java.util.List;
import java.util.concurrent.Callable;

public class CostBalancerStrategy implements BalancerStrategy {
    private static final EmittingLogger log = new EmittingLogger(CostBalancerStrategy.class);

    private static final double HALF_LIFE = 24.0; // cost function half-life in hours
    static final double LAMBDA = Math.log(2) / HALF_LIFE;
    static final double INV_LAMBDA_SQUARE = 1 / (LAMBDA * LAMBDA);

    private static final double MILLIS_IN_HOUR = 3_600_000.0;
    private static final double MILLIS_FACTOR = MILLIS_IN_HOUR / LAMBDA;

    /**
     * This defines the unnormalized cost function between two segments.
     *
     * See https://github.com/druid-io/druid/pull/2972 for more details about the cost function.
     *
     * intervalCost: segments close together are more likely to be queried together
     *
     * multiplier: if two segments belong to the same data source, they are more likely to be involved
     * in the same queries
     *
     * @param segmentA The first DataSegment.
     * @param segmentB The second DataSegment.
     *
     * @return the joint cost of placing the two DataSegments together on one node.
     */
    public static double computeJointSegmentsCost(final DataSegment segmentA, final DataSegment segmentB) {
        final Interval intervalA = segmentA.getInterval();
        final Interval intervalB = segmentB.getInterval();

        final double t0 = intervalA.getStartMillis();
        final double t1 = (intervalA.getEndMillis() - t0) / MILLIS_FACTOR;
        final double start = (intervalB.getStartMillis() - t0) / MILLIS_FACTOR;
        final double end = (intervalB.getEndMillis() - t0) / MILLIS_FACTOR;

        // constant cost-multiplier for segments of the same datsource
        final double multiplier = segmentA.getDataSource().equals(segmentB.getDataSource()) ? 2.0 : 1.0;

        return INV_LAMBDA_SQUARE * intervalCost(t1, start, end) * multiplier;
    }

    /**
     * Computes the joint cost of two intervals X = [x_0 = 0, x_1) and Y = [y_0, y_1)
     *
     * cost(X, Y) = \int_{x_0}^{x_1} \int_{y_0}^{y_1} e^{-\lambda |x-y|}dxdy $$
     *
     * lambda = 1 in this particular implementation
     *
     * Other values of lambda can be calculated by multiplying inputs by lambda
     * and multiplying the result by 1 / lambda ^ 2
     *
     * Interval start and end are all relative to x_0.
     * Therefore this function assumes x_0 = 0, x1 >= 0, and y1 > y0
     *
     * @param x1 end of interval X
     * @param y0 start of interval Y
     * @param y1 end o interval Y
     *
     * @return joint cost of X and Y
     */
    public static double intervalCost(double x1, double y0, double y1) {
        if (x1 == 0 || y1 == y0) {
            return 0;
        }

        // cost(X, Y) = cost(Y, X), so we swap X and Y to
        // have x_0 <= y_0 and simplify the calculations below
        if (y0 < 0) {
            // swap X and Y
            double tmp = x1;
            x1 = y1 - y0;
            y1 = tmp - y0;
            y0 = -y0;
        }

        // since x_0 <= y_0, Y must overlap X if y_0 < x_1
        if (y0 < x1) {
            /**
             * We have two possible cases of overlap:
             *
             * X  = [ A )[ B )[ C )   or  [ A )[ B )
             * Y  =      [   )                 [   )[ C )
             *
             * A is empty if y0 = 0
             * C is empty if y1 = x1
             *
             * cost(X, Y) = cost(A, Y) + cost(B, C) + cost(B, B)
             *
             * cost(A, Y) and cost(B, C) can be calculated using the non-overlapping case,
             * which reduces the overlapping case to computing
             *
             * cost(B, B) = \int_0^{\beta} \int_{0}^{\beta} e^{-|x-y|}dxdy
             *            = 2 \cdot (\beta + e^{-\beta} - 1)
             *
             *            where \beta is the length of interval B
             *
             */
            final double beta; // b1 - y0, length of interval B
            final double gamma; // c1 - y0, length of interval C
            if (y1 <= x1) {
                beta = y1 - y0;
                gamma = x1 - y0;
            } else {
                beta = x1 - y0;
                gamma = y1 - y0;
            }
            return intervalCost(y0, y0, y1) + // cost(A, Y)
                    intervalCost(beta, beta, gamma) + // cost(B, C)
                    2 * (beta + FastMath.exp(-beta) - 1); // cost(B, B)
        } else {
            /**
             * In the case where there is no overlap:
             *
             * Given that x_0 <= y_0,
             * then x <= y must be true for all x in [x_0, x_1] and y in [y_0, y_1).
             *
             * therefore,
             *
             * cost(X, Y) = \int_0^{x_1} \int_{y_0}^{y_1} e^{-|x-y|} dxdy
             *            = \int_0^{x_1} \int_{y_0}^{y_1} e^{x-y} dxdy
             *            = (e^{-y_1} - e^{-y_0}) - (e^{x_1-y_1} - e^{x_1-y_0})
             *
             * Note, this expression could be further reduced by factoring out (e^{x_1} - 1),
             * but we prefer to keep the smaller values x_1 - y_0 and x_1 - y_1 in the exponent
             * to avoid numerical overflow caused by calculating e^{x_1}
             */
            final double exy0 = FastMath.exp(x1 - y0);
            final double exy1 = FastMath.exp(x1 - y1);
            final double ey0 = FastMath.exp(0f - y0);
            final double ey1 = FastMath.exp(0f - y1);

            return (ey1 - ey0) - (exy1 - exy0);
        }
    }

    private final ListeningExecutorService exec;

    public CostBalancerStrategy(ListeningExecutorService exec) {
        this.exec = exec;
    }

    @Override
    public ServerHolder findNewSegmentHomeReplicator(DataSegment proposalSegment,
            List<ServerHolder> serverHolders) {
        ServerHolder holder = chooseBestServer(proposalSegment, serverHolders, false).rhs;
        if (holder != null && !holder.isServingSegment(proposalSegment)) {
            return holder;
        }
        return null;
    }

    @Override
    public ServerHolder findNewSegmentHomeBalancer(DataSegment proposalSegment, List<ServerHolder> serverHolders) {
        return chooseBestServer(proposalSegment, serverHolders, true).rhs;
    }

    static double computeJointSegmentsCost(final DataSegment segment, final Iterable<DataSegment> segmentSet) {
        double totalCost = 0;
        for (DataSegment s : segmentSet) {
            totalCost += computeJointSegmentsCost(segment, s);
        }
        return totalCost;
    }

    public BalancerSegmentHolder pickSegmentToMove(final List<ServerHolder> serverHolders) {
        ReservoirSegmentSampler sampler = new ReservoirSegmentSampler();
        return sampler.getRandomBalancerSegmentHolder(serverHolders);
    }

    /**
     * Calculates the initial cost of the Druid segment configuration.
     *
     * @param serverHolders A list of ServerHolders for a particular tier.
     *
     * @return The initial cost of the Druid tier.
     */
    public double calculateInitialTotalCost(final List<ServerHolder> serverHolders) {
        double cost = 0;
        for (ServerHolder server : serverHolders) {
            Iterable<DataSegment> segments = server.getServer().getSegments().values();
            for (DataSegment s : segments) {
                cost += computeJointSegmentsCost(s, segments);
            }
        }
        return cost;
    }

    /**
     * Calculates the cost normalization.  This is such that the normalized cost is lower bounded
     * by 1 (e.g. when each segment gets its own historical node).
     *
     * @param serverHolders A list of ServerHolders for a particular tier.
     *
     * @return The normalization value (the sum of the diagonal entries in the
     * pairwise cost matrix).  This is the cost of a cluster if each
     * segment were to get its own historical node.
     */
    public double calculateNormalization(final List<ServerHolder> serverHolders) {
        double cost = 0;
        for (ServerHolder server : serverHolders) {
            for (DataSegment segment : server.getServer().getSegments().values()) {
                cost += computeJointSegmentsCost(segment, segment);
            }
        }
        return cost;
    }

    @Override
    public void emitStats(String tier, CoordinatorStats stats, List<ServerHolder> serverHolderList) {
        final double initialTotalCost = calculateInitialTotalCost(serverHolderList);
        final double normalization = calculateNormalization(serverHolderList);
        final double normalizedInitialCost = initialTotalCost / normalization;

        stats.addToTieredStat("initialCost", tier, (long) initialTotalCost);
        stats.addToTieredStat("normalization", tier, (long) normalization);
        stats.addToTieredStat("normalizedInitialCostTimesOneThousand", tier, (long) (normalizedInitialCost * 1000));

        log.info("[%s]: Initial Total Cost: [%f], Normalization: [%f], Initial Normalized Cost: [%f]", tier,
                initialTotalCost, normalization, normalizedInitialCost);
    }

    protected double computeCost(final DataSegment proposalSegment, final ServerHolder server,
            final boolean includeCurrentServer) {
        final long proposalSegmentSize = proposalSegment.getSize();

        // (optional) Don't include server if it is already serving segment
        if (!includeCurrentServer && server.isServingSegment(proposalSegment)) {
            return Double.POSITIVE_INFINITY;
        }

        // Don't calculate cost if the server doesn't have enough space or is loading the segment
        if (proposalSegmentSize > server.getAvailableSize() || server.isLoadingSegment(proposalSegment)) {
            return Double.POSITIVE_INFINITY;
        }

        // The contribution to the total cost of a given server by proposing to move the segment to that server is...
        double cost = 0d;

        // the sum of the costs of other (exclusive of the proposalSegment) segments on the server
        cost += computeJointSegmentsCost(proposalSegment, Iterables.filter(
                server.getServer().getSegments().values(), Predicates.not(Predicates.equalTo(proposalSegment))));

        //  plus the costs of segments that will be loaded
        cost += computeJointSegmentsCost(proposalSegment, server.getPeon().getSegmentsToLoad());

        return cost;
    }

    /**
     * For assignment, we want to move to the lowest cost server that isn't already serving the segment.
     *
     * @param proposalSegment A DataSegment that we are proposing to move.
     * @param serverHolders   An iterable of ServerHolders for a particular tier.
     *
     * @return A ServerHolder with the new home for a segment.
     */

    protected Pair<Double, ServerHolder> chooseBestServer(final DataSegment proposalSegment,
            final Iterable<ServerHolder> serverHolders, final boolean includeCurrentServer) {
        Pair<Double, ServerHolder> bestServer = Pair.of(Double.POSITIVE_INFINITY, null);

        List<ListenableFuture<Pair<Double, ServerHolder>>> futures = Lists.newArrayList();

        for (final ServerHolder server : serverHolders) {
            futures.add(exec.submit(new Callable<Pair<Double, ServerHolder>>() {
                @Override
                public Pair<Double, ServerHolder> call() throws Exception {
                    return Pair.of(computeCost(proposalSegment, server, includeCurrentServer), server);
                }
            }));
        }

        final ListenableFuture<List<Pair<Double, ServerHolder>>> resultsFuture = Futures.allAsList(futures);

        try {
            for (Pair<Double, ServerHolder> server : resultsFuture.get()) {
                if (server.lhs < bestServer.lhs) {
                    bestServer = server;
                }
            }
        } catch (Exception e) {
            log.makeAlert(e, "Cost Balancer Multithread strategy wasn't able to complete cost computation.").emit();
        }
        return bestServer;
    }
}