io.druid.benchmark.query.SearchBenchmark.java Source code

Java tutorial

Introduction

Here is the source code for io.druid.benchmark.query.SearchBenchmark.java

Source

/*
 * Licensed to Metamarkets Group Inc. (Metamarkets) under one
 * or more contributor license agreements. See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. Metamarkets licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied. See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package io.druid.benchmark.query;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.google.common.base.Suppliers;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import com.google.common.io.Files;
import io.druid.benchmark.datagen.BenchmarkDataGenerator;
import io.druid.benchmark.datagen.BenchmarkSchemaInfo;
import io.druid.benchmark.datagen.BenchmarkSchemas;
import io.druid.java.util.common.concurrent.Execs;
import io.druid.data.input.InputRow;
import io.druid.data.input.Row;
import io.druid.hll.HyperLogLogHash;
import io.druid.jackson.DefaultObjectMapper;
import io.druid.java.util.common.granularity.Granularities;
import io.druid.java.util.common.guava.Sequence;
import io.druid.java.util.common.guava.Sequences;
import io.druid.java.util.common.logger.Logger;
import io.druid.query.Druids;
import io.druid.query.Druids.SearchQueryBuilder;
import io.druid.query.FinalizeResultsQueryRunner;
import io.druid.query.Query;
import io.druid.query.QueryPlus;
import io.druid.query.QueryRunner;
import io.druid.query.QueryRunnerFactory;
import io.druid.query.QueryToolChest;
import io.druid.query.Result;
import io.druid.query.aggregation.hyperloglog.HyperUniquesSerde;
import io.druid.query.extraction.DimExtractionFn;
import io.druid.query.extraction.IdentityExtractionFn;
import io.druid.query.extraction.LowerExtractionFn;
import io.druid.query.extraction.StrlenExtractionFn;
import io.druid.query.extraction.SubstringDimExtractionFn;
import io.druid.query.extraction.UpperExtractionFn;
import io.druid.query.filter.AndDimFilter;
import io.druid.query.filter.BoundDimFilter;
import io.druid.query.filter.DimFilter;
import io.druid.query.filter.InDimFilter;
import io.druid.query.filter.SelectorDimFilter;
import io.druid.query.search.SearchQueryQueryToolChest;
import io.druid.query.search.SearchQueryRunnerFactory;
import io.druid.query.search.SearchResultValue;
import io.druid.query.search.SearchStrategySelector;
import io.druid.query.search.SearchHit;
import io.druid.query.search.SearchQuery;
import io.druid.query.search.SearchQueryConfig;
import io.druid.query.spec.MultipleIntervalSegmentSpec;
import io.druid.query.spec.QuerySegmentSpec;
import io.druid.segment.IncrementalIndexSegment;
import io.druid.segment.IndexIO;
import io.druid.segment.IndexMergerV9;
import io.druid.segment.IndexSpec;
import io.druid.segment.QueryableIndex;
import io.druid.segment.QueryableIndexSegment;
import io.druid.segment.column.ColumnConfig;
import io.druid.segment.incremental.IncrementalIndex;
import io.druid.segment.serde.ComplexMetrics;
import org.apache.commons.io.FileUtils;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Param;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.TearDown;
import org.openjdk.jmh.annotations.Warmup;
import org.openjdk.jmh.infra.Blackhole;

import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.TimeUnit;

@State(Scope.Benchmark)
@Fork(value = 1)
@Warmup(iterations = 10)
@Measurement(iterations = 25)
public class SearchBenchmark {
    @Param({ "1" })
    private int numSegments;

    @Param({ "750000" })
    private int rowsPerSegment;

    @Param({ "basic.A" })
    private String schemaAndQuery;

    @Param({ "1000" })
    private int limit;

    private static final Logger log = new Logger(SearchBenchmark.class);
    private static final IndexMergerV9 INDEX_MERGER_V9;
    private static final IndexIO INDEX_IO;
    public static final ObjectMapper JSON_MAPPER;

    private List<IncrementalIndex> incIndexes;
    private List<QueryableIndex> qIndexes;

    private QueryRunnerFactory factory;
    private BenchmarkSchemaInfo schemaInfo;
    private Druids.SearchQueryBuilder queryBuilder;
    private SearchQuery query;
    private File tmpDir;

    private ExecutorService executorService;

    static {
        JSON_MAPPER = new DefaultObjectMapper();
        INDEX_IO = new IndexIO(JSON_MAPPER, new ColumnConfig() {
            @Override
            public int columnCacheSizeBytes() {
                return 0;
            }
        });
        INDEX_MERGER_V9 = new IndexMergerV9(JSON_MAPPER, INDEX_IO);
    }

    private static final Map<String, Map<String, Druids.SearchQueryBuilder>> SCHEMA_QUERY_MAP = new LinkedHashMap<>();

    private void setupQueries() {
        // queries for the basic schema
        final Map<String, SearchQueryBuilder> basicQueries = new LinkedHashMap<>();
        final BenchmarkSchemaInfo basicSchema = BenchmarkSchemas.SCHEMA_MAP.get("basic");

        final List<String> queryTypes = ImmutableList.of("A", "B", "C", "D");
        for (final String eachType : queryTypes) {
            basicQueries.put(eachType, makeQuery(eachType, basicSchema));
        }

        SCHEMA_QUERY_MAP.put("basic", basicQueries);
    }

    private static SearchQueryBuilder makeQuery(final String name, final BenchmarkSchemaInfo basicSchema) {
        switch (name) {
        case "A":
            return basicA(basicSchema);
        case "B":
            return basicB(basicSchema);
        case "C":
            return basicC(basicSchema);
        case "D":
            return basicD(basicSchema);
        default:
            return null;
        }
    }

    private static SearchQueryBuilder basicA(final BenchmarkSchemaInfo basicSchema) {
        final QuerySegmentSpec intervalSpec = new MultipleIntervalSegmentSpec(
                Collections.singletonList(basicSchema.getDataInterval()));

        return Druids.newSearchQueryBuilder().dataSource("blah").granularity(Granularities.ALL)
                .intervals(intervalSpec).query("123");
    }

    private static SearchQueryBuilder basicB(final BenchmarkSchemaInfo basicSchema) {
        final QuerySegmentSpec intervalSpec = new MultipleIntervalSegmentSpec(
                Collections.singletonList(basicSchema.getDataInterval()));

        final List<String> dimUniformFilterVals = Lists.newArrayList();
        int resultNum = (int) (100000 * 0.1);
        int step = 100000 / resultNum;
        for (int i = 1; i < 100001 && dimUniformFilterVals.size() < resultNum; i += step) {
            dimUniformFilterVals.add(String.valueOf(i));
        }

        List<String> dimHyperUniqueFilterVals = Lists.newArrayList();
        resultNum = (int) (100000 * 0.1);
        step = 100000 / resultNum;
        for (int i = 0; i < 100001 && dimHyperUniqueFilterVals.size() < resultNum; i += step) {
            dimHyperUniqueFilterVals.add(String.valueOf(i));
        }

        final List<DimFilter> dimFilters = Lists.newArrayList();
        dimFilters.add(new InDimFilter("dimUniform", dimUniformFilterVals, null));
        dimFilters.add(new InDimFilter("dimHyperUnique", dimHyperUniqueFilterVals, null));

        return Druids.newSearchQueryBuilder().dataSource("blah").granularity(Granularities.ALL)
                .intervals(intervalSpec).query("").dimensions(Lists.newArrayList("dimUniform", "dimHyperUnique"))
                .filters(new AndDimFilter(dimFilters));
    }

    private static SearchQueryBuilder basicC(final BenchmarkSchemaInfo basicSchema) {
        final QuerySegmentSpec intervalSpec = new MultipleIntervalSegmentSpec(
                Collections.singletonList(basicSchema.getDataInterval()));

        final List<String> dimUniformFilterVals = Lists.newArrayList();
        final int resultNum = (int) (100000 * 0.1);
        final int step = 100000 / resultNum;
        for (int i = 1; i < 100001 && dimUniformFilterVals.size() < resultNum; i += step) {
            dimUniformFilterVals.add(String.valueOf(i));
        }

        final String dimName = "dimUniform";
        final List<DimFilter> dimFilters = Lists.newArrayList();
        dimFilters.add(new InDimFilter(dimName, dimUniformFilterVals, IdentityExtractionFn.getInstance()));
        dimFilters.add(new SelectorDimFilter(dimName, "3", StrlenExtractionFn.instance()));
        dimFilters.add(new BoundDimFilter(dimName, "100", "10000", true, true, true, new DimExtractionFn() {
            @Override
            public byte[] getCacheKey() {
                return new byte[] { 0xF };
            }

            @Override
            public String apply(String value) {
                return String.valueOf(Long.parseLong(value) + 1);
            }

            @Override
            public boolean preservesOrdering() {
                return false;
            }

            @Override
            public ExtractionType getExtractionType() {
                return ExtractionType.ONE_TO_ONE;
            }
        }, null));
        dimFilters.add(new InDimFilter(dimName, dimUniformFilterVals, new LowerExtractionFn(null)));
        dimFilters.add(new InDimFilter(dimName, dimUniformFilterVals, new UpperExtractionFn(null)));
        dimFilters.add(new InDimFilter(dimName, dimUniformFilterVals, new SubstringDimExtractionFn(1, 3)));

        return Druids.newSearchQueryBuilder().dataSource("blah").granularity(Granularities.ALL)
                .intervals(intervalSpec).query("").dimensions(Lists.newArrayList("dimUniform"))
                .filters(new AndDimFilter(dimFilters));
    }

    private static SearchQueryBuilder basicD(final BenchmarkSchemaInfo basicSchema) {
        final QuerySegmentSpec intervalSpec = new MultipleIntervalSegmentSpec(
                Collections.singletonList(basicSchema.getDataInterval()));

        final List<String> dimUniformFilterVals = Lists.newArrayList();
        final int resultNum = (int) (100000 * 0.1);
        final int step = 100000 / resultNum;
        for (int i = 1; i < 100001 && dimUniformFilterVals.size() < resultNum; i += step) {
            dimUniformFilterVals.add(String.valueOf(i));
        }

        final String dimName = "dimUniform";
        final List<DimFilter> dimFilters = Lists.newArrayList();
        dimFilters.add(new InDimFilter(dimName, dimUniformFilterVals, null));
        dimFilters.add(new SelectorDimFilter(dimName, "3", null));
        dimFilters.add(new BoundDimFilter(dimName, "100", "10000", true, true, true, null, null));
        dimFilters.add(new InDimFilter(dimName, dimUniformFilterVals, null));
        dimFilters.add(new InDimFilter(dimName, dimUniformFilterVals, null));
        dimFilters.add(new InDimFilter(dimName, dimUniformFilterVals, null));

        return Druids.newSearchQueryBuilder().dataSource("blah").granularity(Granularities.ALL)
                .intervals(intervalSpec).query("").dimensions(Lists.newArrayList("dimUniform"))
                .filters(new AndDimFilter(dimFilters));
    }

    @Setup
    public void setup() throws IOException {
        log.info("SETUP CALLED AT " + +System.currentTimeMillis());

        if (ComplexMetrics.getSerdeForType("hyperUnique") == null) {
            ComplexMetrics.registerSerde("hyperUnique", new HyperUniquesSerde(HyperLogLogHash.getDefault()));
        }
        executorService = Execs.multiThreaded(numSegments, "SearchThreadPool");

        setupQueries();

        String[] schemaQuery = schemaAndQuery.split("\\.");
        String schemaName = schemaQuery[0];
        String queryName = schemaQuery[1];

        schemaInfo = BenchmarkSchemas.SCHEMA_MAP.get(schemaName);
        queryBuilder = SCHEMA_QUERY_MAP.get(schemaName).get(queryName);
        queryBuilder.limit(limit);
        query = queryBuilder.build();

        incIndexes = new ArrayList<>();
        for (int i = 0; i < numSegments; i++) {
            log.info("Generating rows for segment " + i);
            BenchmarkDataGenerator gen = new BenchmarkDataGenerator(schemaInfo.getColumnSchemas(),
                    System.currentTimeMillis(), schemaInfo.getDataInterval(), rowsPerSegment);

            IncrementalIndex incIndex = makeIncIndex();

            for (int j = 0; j < rowsPerSegment; j++) {
                InputRow row = gen.nextRow();
                if (j % 10000 == 0) {
                    log.info(j + " rows generated.");
                }
                incIndex.add(row);
            }
            incIndexes.add(incIndex);
        }

        tmpDir = Files.createTempDir();
        log.info("Using temp dir: " + tmpDir.getAbsolutePath());

        qIndexes = new ArrayList<>();
        for (int i = 0; i < numSegments; i++) {
            File indexFile = INDEX_MERGER_V9.persist(incIndexes.get(i), tmpDir, new IndexSpec());

            QueryableIndex qIndex = INDEX_IO.loadIndex(indexFile);
            qIndexes.add(qIndex);
        }

        final SearchQueryConfig config = new SearchQueryConfig().withOverrides(query);
        factory = new SearchQueryRunnerFactory(new SearchStrategySelector(Suppliers.ofInstance(config)),
                new SearchQueryQueryToolChest(config,
                        QueryBenchmarkUtil.NoopIntervalChunkingQueryRunnerDecorator()),
                QueryBenchmarkUtil.NOOP_QUERYWATCHER);
    }

    @TearDown
    public void tearDown() throws IOException {
        FileUtils.deleteDirectory(tmpDir);
    }

    private IncrementalIndex makeIncIndex() {
        return new IncrementalIndex.Builder().setSimpleTestingIndexSchema(schemaInfo.getAggsArray())
                .setReportParseExceptions(false).setMaxRowCount(rowsPerSegment).buildOnheap();
    }

    private static <T> List<T> runQuery(QueryRunnerFactory factory, QueryRunner runner, Query<T> query) {
        QueryToolChest toolChest = factory.getToolchest();
        QueryRunner<T> theRunner = new FinalizeResultsQueryRunner<>(
                toolChest.mergeResults(toolChest.preMergeQueryDecoration(runner)), toolChest);

        Sequence<T> queryResult = theRunner.run(QueryPlus.wrap(query), Maps.<String, Object>newHashMap());
        return Sequences.toList(queryResult, Lists.<T>newArrayList());
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @OutputTimeUnit(TimeUnit.MICROSECONDS)
    public void querySingleIncrementalIndex(Blackhole blackhole) throws Exception {
        QueryRunner<SearchHit> runner = QueryBenchmarkUtil.makeQueryRunner(factory, "incIndex",
                new IncrementalIndexSegment(incIndexes.get(0), "incIndex"));

        List<Result<SearchResultValue>> results = SearchBenchmark.runQuery(factory, runner, query);
        List<SearchHit> hits = results.get(0).getValue().getValue();
        for (SearchHit hit : hits) {
            blackhole.consume(hit);
        }
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @OutputTimeUnit(TimeUnit.MICROSECONDS)
    public void querySingleQueryableIndex(Blackhole blackhole) throws Exception {
        final QueryRunner<Result<SearchResultValue>> runner = QueryBenchmarkUtil.makeQueryRunner(factory, "qIndex",
                new QueryableIndexSegment("qIndex", qIndexes.get(0)));

        List<Result<SearchResultValue>> results = SearchBenchmark.runQuery(factory, runner, query);
        List<SearchHit> hits = results.get(0).getValue().getValue();
        for (SearchHit hit : hits) {
            blackhole.consume(hit);
        }
    }

    @Benchmark
    @BenchmarkMode(Mode.AverageTime)
    @OutputTimeUnit(TimeUnit.MICROSECONDS)
    public void queryMultiQueryableIndex(Blackhole blackhole) throws Exception {
        List<QueryRunner<Row>> singleSegmentRunners = Lists.newArrayList();
        QueryToolChest toolChest = factory.getToolchest();
        for (int i = 0; i < numSegments; i++) {
            String segmentName = "qIndex" + i;
            final QueryRunner<Result<SearchResultValue>> runner = QueryBenchmarkUtil.makeQueryRunner(factory,
                    segmentName, new QueryableIndexSegment(segmentName, qIndexes.get(i)));
            singleSegmentRunners.add(toolChest.preMergeQueryDecoration(runner));
        }

        QueryRunner theRunner = toolChest.postMergeQueryDecoration(new FinalizeResultsQueryRunner<>(
                toolChest.mergeResults(factory.mergeRunners(executorService, singleSegmentRunners)), toolChest));

        Sequence<Result<SearchResultValue>> queryResult = theRunner.run(QueryPlus.wrap(query),
                Maps.<String, Object>newHashMap());
        List<Result<SearchResultValue>> results = Sequences.toList(queryResult,
                Lists.<Result<SearchResultValue>>newArrayList());

        for (Result<SearchResultValue> result : results) {
            List<SearchHit> hits = result.getValue().getValue();
            for (SearchHit hit : hits) {
                blackhole.consume(hit);
            }
        }
    }
}